Shibaura Machine

ROI部 II/ß-4-// SERIES

CONTROLLER

MODEL: CA20-M10/M40 CA20-S10/S40

Opereitsg Masjuel (Eesjc Sectiosj)

SHIBAURA MACHINE CO., LTD.

Keep this manual at hand after operators have read it thoroughly.

Introduction

Thank you for selecting the ROlbot BA II series.
To ensure correct usage, read this instruction manual before starting use of the ROlbot BA II series.

For information on the actuators in ROlbot BA II series, refer to the Actuator Operating Manual supplied with the actuator.

PRECAUTION

1. The contents of this manual are subject to change without prior notice.
2. An effort has been made to ensure the contents of this manual. If you have any questions, or find any mistakes, please contact us.
3. Regardless of item 2 above, we will not be held responsible for any effect caused by using this robot.

Contents

Chapter 1 General Safety Instruction
1.1 Important messages 1-1
1.2 Safe Operation 1-6
1.2.1 Auxiliary safety precautions before ROlbot installation 1-6
1.2.2 Precautions for installing the ROlbot 1-7
1.2.3 Precautions for operation of the ROlbot 1-7
1.3 Warranty 1-9
1.3.1 Warranty period 1-9
1.3.2 Warranty details 1-9
1.3.3 Exemption of liability 1-9
1.3.4 Notes 1-9
Chapter 2 Devices
2.1 Features 2-1
2.2 System components and specifications 2-3
2.2.1 System components 2-3
2.2.2 Controller specifications 2-4
(1) Master unit specifications 2-5
(2) Slave unit specifications 2-6
(3) Various units and options 2-7
2.3 Explanation of each part 2-8
2.3.1 External dimensions and explanation of each part 2-8
2.3.2 Function of each part 2-9
2.3.3 Explanation of expansion input/output unit 2-11
2.3.4 Explanation of Teach Pendant 2-12
2.4 Procedures from installation to operation 2-15
2.4.1 Installing the controller 2-16
2.4.2 Supply power and grounding 2-17
2.4.3 Improvement of noise resistance 2-19
2.4.4 Connecting the axis and controller 2-20
2.4.5 Connecting the emergency stop circuit 2-23
2.4.6 Effect of leakage current 2-23
2.4.7 Setting the Robot Type 2-24
2.4.8 Setting the software limit and Return to Origin 2-26
2.4.9 Servo gain adjustment 2-28
2.4.10 Absolute encoder backup 2-29
2.5 Moving the ROlbot 2-32

Chapter 3 General Programming

3.1 Explanation of operation modes 3-1
3.1.1 Explanation of RUN mode 3-3
3.1.2 Explanation of PRGM mode 3-4
3.1.3 Return to Origin 3-5
3.2 General programming 3-6
3.2.1 Basic programming 3-10
3.2.2 Position data input 3-12
(1) Remote teaching 3-13
(2) Direct teaching 3-15
(3) MDI (Manual Data Input) 3-17
3.2.3 Memory Clear (Initialization) 3-19
3.2.4 MOV system command words and parameters 3-22
Chapter 4 Sequential Mode
4.1 Sequential PRGM mode 4-1
4.1.1 How to enter and leave PRGM (program) mode 4-1
4.1.2 Editing of steps in sequential program 4-2
4.1.3 Copy editing of sequential programs 4-4
4.1.4 Clearing of sequential programs 4-5
4.1.5 HELP function in entering a command 4-7
4.1.6 Method to restart operation of sequential mode after turning power OFF 4-8
4.1.7 Palletizing work with MVM commands 4-10
4.2 Sequential RUN mode 4-16
4.2.1 AUTO mode of sequential mode 4-16
(1) Continuous operation 4-16
(2) Single operation 4-17
4.2.2 STEP mode of sequential mode 4-18
4.2.3 Changing of speed during operation (override) 4-29
Chapter 5 Multi-task
5.1 Multitasking 5-1
5.2 Merits of multitasking 5-1
5.3 Multitasking usage methods 5-2
5.3.1 Multitasking specifications 5-2
5.3.2 Multitasking functions and settings 5-2
5.3.3 Starting and stopping tasks 5-3
5.3.4 Multitasking operation 5-4
5.3.5 Applying timing between tasks 5-5
5.4 Details on multitasking 5-6
5.4.1 Task status 5-6
5.4.2 Transition of states 5-6
5.4.3 Transfer of data between tasks 5-7
5.4.4 Task priority 5-7
Chapter 6 Easy Mode
6.1 PRGM mode of easy mode 6-2
6.1.1 How to enter and leave the easy mode 6-2
6.1.2 Editing easy mode program 6-3
6.1.3 Copy editing of easy mode 6-15
6.1.4 Clearing of easy mode programs 6-16
6.2 RUN mode of easy mode 6-17
6.2.1 AUTO mode of easy mode 6-17
(1) Continuous operation 6-17
(2) Single operation 6-18
6.2.2 STEP mode of easy mode 6-19
6.2.3 Changing of speed during operation (override) 6-20
Chapter 7 Palletizing mode
7.1 Basic flow chart of palletizing mode 7-3
7.2 PRGM mode in palletizing mode 7-4
7.2.1 How to enter and leave the PRGM mode 7-7
7.2.2 Editing palletizing mode program 7-8
7.2.3 Copy editing of palletizing mode 7-11
7.2.4 Clearing of palletizing mode programs 7-12
7.2.5 How to restart operation after turning power OFF in palletizing mode 7-13
7.3 RUN mode of palletizing mode 7-14
7.3.1 AUTO mode of palletizing mode 7-14
(1) Continuous operation 7-14
(2) Single operation 7-17
7.3.2 STEP mode of palletizing mode 7-17
7.3.3 Changing of speed during operation (override) 7-19
Chapter 8 External Point Designation Mode
8.1 Explanation of external point designation mode 8-1
8.2 Operation method of external point designation mode 8-5
8.2.1 Execution with input/output 8-5
8.2.2 Operation with Teach Pendant 8-6
8.3 Changing of speed during operation (Override) 8-6
Chapter 9 Pulse train input mode
9.1 System 9-1
9.1.1 System configuration method 9-1
9.1.2 Specifications of pulse train input mode 9-2
9.2 Input/output signals 9-3
9.2.1 Input/output connector signal names and pin numbers 9-3
9.2.2 Functions of each input/output signal 9-4
9.2.3 Example of input/output signal connection 9-8
9.3 Operation methods 9-10
9.3.1 Designation of pulse train input mode 9-10
9.3.2 Matters to be set for pulse train input mode 9-10
9.3.3 Protective functions 9-11
9.4 Precautions for operation 9-12
9.5 Operation procedures 9-12
Chapter 10 Connection with External Devices
10.1 Input/output signal 10-1
10.1.1 Master unit input/output connector signal names and pin numbers 10-1
10.1.2 Slave unit input/output connector signal names and pin numbers 10-2
10.1.3 Expansion input/output signal names and pin Nos. 10-8
10.1.4 Names of general-purpose input/output ports and Teach Pendant displays 10-9
10.1.5 Example of input/output signal connection 10-10
10.2 Details of system input/output function 10-13
10.2.1 Return to origin input 10-13
10.2.2 Start input 10-13
10.2.3 Stop input 10-14
10.2.4 Reset input 10-14
10.2.5 Robot single operation input 10-14
10.2.6 Continuous start input 10-15
10.2.7 Escape input 10-15
10.2.8 Pause (temporary stop) input 10-15
10.2.9 Program No. selection input 10-16
10.2.10 Palletizing input 10-17
10.2.11 Running output 10-17
10.2.12 Error output 10-17
10.2.13 Positioning complete output 10-17
10.2.14 Return to origin complete output 10-17
10.2.15 Input wait output 10-18
10.2.16 Pausing (temporarily stopped) output 10-18
10.2.17 READY output 10-18
10.2.18 Individual task positioning complete output 10-18
10.2.19 Individual task return to origin complete output 10-18
10.2.20 Battery alarm output 10-18
10.3 RS-232C communication specifications 10-18
Chapter 11 CC-Link
11.1 CC-Link Function 11-1
11.1.1 Overview 11-1
11.1.2 CC-Link specifications 11-2
11.1.3 How to attach the CC-Link module 11-2
11.1.4 Explanation of CC-Link component and external dimensions 11-3
11.1.5 Connection of exclusive CC-Link cable 11-4
11.1.6 CC-Link settings 11-4
11.2 Connection with External Devices 11-5
11.2.1 List of master unit I/O signals 11-5
11.2.2 System I/O 11-6
11.2.3 Name of general-purpose I/O port and teach pendant display 11-7
11.2.4 Jog input/output 11-8
11.3 Data Communication 11-10
11.3.1 Overview of data communication 11-10
11.3.2 Command mode 11-11
11.3.2.1 Transmitting and receiving data 11-11
11.3.2.2 Command table 11-13
11.3.2.3 Descriptions on each command 11-14
11.3.3 Monitor mode 11-21
11.3.3.1 Data receiving method 11-21
11.3.3.2 List of monitor types 11-22
11.3.3.3 Explanation of monitors 11-22
11.4 Speed control mode through CC-Link 11-27
11.4.1 Overview 11-27
11.4.2 Speed control specifications 11-27
11.4.3 Items prohibited 11-27
11.4.4 Settings of speed control mode 11-28
11.4.5 List of I/O signals 11-28
11.4.6 List of I/O data 11-29
11.4.7 Details of I/O signals 11-30
11.5 Selection table extension in external point designation mode 11-34
11.5.1 Overview 11-34
11.5.2 How to set selection table extension 11-34
11.5.3 Assignment of input signals and tables 11-35
11.6 Maximum torque limit function 11-38
11.6.1 Overview 11-38
11.6.2 Specifications for the maximum torque limit function 11-38
11.6.3 Setting of the maximum torque limit function 11-38
11.6.4 Setting of a maximum torque limit value 11-39
11.6.5 Special I/O signals 11-39
11.7 CC-Link status 10-41
Chapter 12 DeviceNet
12.1 DeviceNet Function 12-1
12.1.1 Overview 12-1
12.1.2 DeviceNet specifications 12-1
12.1.3 How to attach the DeviceNet module 12-2
12.1.4 Explanation of DeviceNet component and external dimensions 12-2
12.1.5 Connection of exclusive DeviceNet cable 12-4
12.1.6 DeviceNet settings 12-4
12.2 Connection with External Devices 12-5
12.2.1 List of master unit I/O signals 12-5
12.2.2 System I/O 12-6
12.2.3 Name of general-purpose I/O port and teach pendant display 12-7
12.2.4 Jog input/output 12-8
Chapter 13 Parameter Setting
13.1 How to enter and leave the PARA mode 13-1
13.2 Method of mode setting 13-2
13.2.1 Designation of single operation mode input bit 13-3
13.2.2 Designation of continuous start input bit 13-3
13.2.3 Designation of escape input bit 13-3
13.2.4 Designation of pause input bit 13-4
13.2.5 Designation of program selection input bit 13-4
13.2.6 Designation of return to origin input bit 13-5
13.2.7 Designation of pausing output bit 13-5
13.2.8 Designation of input wait output bit 13-5
13.2.9 Setting of Teach Pendant display (Japanese/English) mode 13-5
13.2.10 OFF (Invalid), easy, point, pulse 1, pulse 2 13-6
13.2.11 Setting of general-purpose output clear mode during emergency stop and reset 13-6
13.2.12 Setting of state when continuous start is valid (Input ON) 13-7
13.2.13 Setting of state when continuous start is valid (Input OFF) 13-7
13.2.14 Setting of direct output bit 13-7
13.2.15 Designation of READY output bit 13-8
13.2.16 Designation of palletizing input bit 13-8
13.2.17 Expansion input/output during external point designation mode Valid/Invalid 13-8
13.2.18 Setting of task positioning output 13-8
13.2.19 Setting of task return to origin output 13-9
13.2.20 Setting of CC-Link 13-9
13.2.21 Setting of DeviceNet 13-10
13.2.22 Designation of battery alarm output bit 13-10
13.2.23 Moving coordinate table number output in external point designation mode 13-10
13.3 Parameter 1 setting 13-11
13.3.1 Setting of software limit value (upper limit) 13-12
13.3.2 Setting of software limit value (lower limit) 13-12
13.3.3 Setting of servo gain (position/speed) 13-12
13.3.4 Setting of pass area 13-13
13.3.5 Setting of origin offset value 13-13
13.3.6 Setting of sequence of return to origin 13-14
13.3.7 Setting of JOG speed 13-15
13.3.8 Setting of JOG inching movement 13-15
13.4 Parameter 2 setting 13-16
13.4.1 Setting of axis display 13-18
13.4.2 Setting of in-position data value 13-18
13.4.3 Setting of overflow data value 13-18
13.4.4 Setting of feed forward data value 13-19
13.4.5 Setting of direction of motor revolution 13-19
13.4.6 Setting of maximum speed 13-19
13.4.7 Setting of return to origin speed 13-20
13.4.8 Setting of return to origin method 13-22
13.4.9 Setting of origin sensor logic 13-23
13.4.10 Setting of high speed return to origin position 13-23
13.4.11 Setting of lead 13-23
13.4.12 Setting of encoder No. of divisions 13-24
13.4.13 Setting of encoder pulse multiplier 13-24
13.4.14 Setting of encoder type 13-24
13.4.15 Setting of task and axis combination 13-25
13.4.16 Setting of task order of priority 13-25
13.4.17 Setting of task point table 13-26
13.4.18 Setting of No. of task steps 13-26
13.4.19 BA I/O compatibility mode 13-26
13.5 How to set the tables 13-27
13.5.1 Setting of coordinate (point) table 13-28
13.5.2 Setting of speed table 13-28
13.5.3 Setting of acceleration/deceleration table 13-29
13.5.4 Setting of MVM table 13-30

Chapter 14 Monitoring

14.1 Program step No. monitoring 14-2
14.2 Input/output monitoring 14-3
14.3 Counter and timer monitoring- 14-5
14.4 Coordinate monitoring 14-6
14.5 Origin sensor/encoder Z-phase pulse monitoring 14-8
Chapter 15 Search Function
15.1 Search of sequential step No. 15-1
15.2 Search of tag No. 15-1
15.3 Search of easy step No. 15-2
15.4 Search of easy program No. 15-2
15.5 Search of palletizing program No. 15-3
15.6 Search of palletizing program screen No. 15-3
Chapter 16 Manual Operation of General-purpose Outputs
16.1 Manual output using function keys- 16-1
16.2 Manual output of random bit designation from PRGM mode 16-2
Chapter 17 Other Handy Operations
17.1 Teach Pendant ON/OFF 17-1
17.2 Reset operation 17-2
17.3 Counter direct set 17-3
17.4 Version display 17-4
17.5 JOG operation (Manual operation of axis) 17-5
17.6 Clearing (initializing) coordinate table 17-7
17.7 BA I/O Compatibility Mode 17-8
17.7.1 Selection method of BA I/O compatibility mode 17-8
17.7.2 Operation specifications for return to origin complete output and positioning complete output 17-9
17.8 Movement operation on coordinate table setting screen 17-11
Chapter 18 Commands
ACC (Setting acceleration/deceleration) 18-4
BRAC (Counter jump) 18-5
CAL (Unconditional call) 18-6
CALC (Counter conditional call) 18-7
CALI (Input conditional call) 18-8
CALT (Timer conditional call) 18-10
CNT (Preset counter value) 18-11
CNT+ (Count up) 18-12
CNT- (Count down) 18-13
CNTC (Clear all counters) 18-14
END (End) 18-15
HOME (Return to origin) 18-16
IN (Waiting for input) 18-17
INPC (Setting general-purpose port input to counter) 18-18
JMP (Unconditional jump) 18-19
JMPC (Counter conditional jump) 18-20
JMPI (Input conditional jump) 18-21
JMPT (Timer conditional jump) 18-23
LOOP (Loop for MVM) 18-24
MINI (Initial counter value for MVM) 18-25
MOVP (Axis Movement to the Indirectly Designated Point by Coordinate Table) 18-26
MVB (Move (return) to point immediately before the current position) 18-28
MVE (Escape move) 18-29
MVM (Palletizing movement) 18-31
NOP (No function) 18-33
OFS (Offset) 18-34
OUT (General-purpose port output) 18-35
OUTC (General-purpose port output of counter value) 18-37
OUTP (General-purpose port pulse output) 18-38
PSEL (Program selection) 18-39
RET (Return) 18-40
SPD (Setting speed) 18-41
STOP (Stop) 18-42
SVOF (Servo-off) 18-43
SVON (Servo-on) 18-44
TAG (Tag) 18-45
TCAN (Task forced end) 18-46
TIM (Waiting) 18-47
TIMP (Timer preset) 18-48
TRSA (Task restart) 18-49
TSTO (Task temporary stop) 18-50
TSTR (Task start) 18-51
Chapter 19 Error messages
19.1 Error Display 19-1
19.2 Error Table 19-2
19.3 Flashing of status display LED 19-8
Chapter 20 BA-C series
20.1 Specification 20-1
20.2 Explanation of each part 20-2
20.3 Connections 20-6
20.4 Selecting the power supply 20-7
20.5 Installing 20-8
20.6 Supply power and grounding 20-9
20.7 Improvement of noise resistance 20-10
20.8 Connecting controllers 20-10
20.9 Resolver ABS backup 20-11
20.10 Regenerative Resistors 20-13
20.10.1 Specifications 20-13
20.10.2 External dimensions 20-14
20.10.3 Installation 20-14
20.10.4 Connection example 20-15
Chapter 21 Maintenance and Inspection
21.1 Procedures before and after inspection and maintenance 21-1
21.2 Inspection before operation 21-2
21.3 Periodic inspection 21-2
21.3.1 Inspection of timing belt 21-3
21.4 Lubrication 21-4
21.5 Cleaning 21-5
21.6 Spare parts 21-5
21.6.1 Controller spare parts 21-5
21.6.2 Axis spare parts 21-5

Chapter 1 General Safety Instruction

■ 1.1 Important messages

- READ THIS MANUAL carefully for important information about safety, handling, installation, operation, maintenance, and parts replacements.
- This manual and all accompanying drawings should be considered a permanent part of the equipment.
They should be readily available for review and reference at all times.

IMPORTANT MESSAGES

Read this manual and follow its instructions. Signal words such as DANGER, WARNING and CAUTION will be followed by important safety information that must be carefully reviewed.

DANGER : Indicates a situation which will result in death, serious injury, or severe property damage if you do not follow instructions.

Means that you might be seriously injured or killed if you do not follow instructions. Severe property damage might also occur.

ACAUTION : Means that you might be injured if you do not follow instructions. Equipment damage might also occur.

NOTE : Gives you helpful information.
? : Means that the description of glossaries is written and the corresponding page is indicated.

AWARNING Use only SHIBAURA-MACHINE-authorized replacement parts.

RWMRNING This equipment is designed and built in accordance with applicable safety standards in effect on the date of manufacture.
Unauthorized modifications will void the warranty and can result in severe injury, death and property damage.
Do not make any electrical or mechanical modifications to this equipment without the written approval of the manufacturer.

QUALIFIED PERSONS ONLY

Only qualified persons are to install, operate or service this equipment according to all applicable codes and established safety practices.

A qualified person must:

1) Carefully read the entire instruction manual.
2) Be skilled in the installation, construction or operation of the equipment and aware of the hazards involved.
3) Be trained and authorized to safely energize, de-energize, clear, ground, lockout and tag circuits in accordance with established safety practice.
4) Be trained and authorized to perform the service, maintenance or repair of this equipment.
5) Be trained in the proper care and use of protective equipment such as rubber gloves, hard hat, safety glasses, face shield, flash clothing, etc. in accordance with established practices.
6) Be trained in rendering first aid.

DANGER

HAZARDOUS VOLTAGE will cause severe injury, death, fire, explosion and property damage.

- Disconnect and lock out primary and control circuit power before servicing.
- This equipment contains capacitors which stay charged after power has been shut off. Wait for a minimum of 3 minutes before servicing.

! DANGER MOVING PARTS will cause severe injury, death or property damage.

- An effective safety barrier with appropriate interlocks and emergency stop provisions must be placed around the robot to protect all personnel from the intended and unintended movement of the robot and the potential of throwing of work pieces and materials by the robot.
No personnel should be allowed within this area during operation of the robot.
- Never defeat, modify or bypass any of the safety interlocks.
- Never modify the robot arm or controller without written permission of the manufactures.
- Only properly trained and qualified persons are to install, program, operate or service this equipment according to all applicable codes and established safety practices.

! DANGER

- Do not get water on the inside or outside or the robot and do not wipe it off with water.

Doing so could lead to electric shocks or faults.
(If the robot is dirty, wipe it off with a strongly wrung out cloth.)
(Do not use organic solvents such as paint thinner or benzene.)

- Do not insert or drop in foreign matter such as metals into the robot from the ventilation holes. Doing so could lead to fires or electric shocks.

RWARNING
 MOVING PARTS OR POTENTIAL MOVING PARTS can cause severe

 injury, death or property damage.- Do not insert your fingers or any objects into the openings on this robot.
- Horizontal mounting only. The " X and " Y " axes do not have a brake.
- When using the side mounted motor axis vertically, periodically inspect the belt, and replace it after every 3,000 hours of operation.
If use is continued after the belt's life, the belt could break. This could cause the slider to drop unexpectedly and lead to injuries.

RWARNING EMERGENCY STOP

- Emergency stop connect the emergency stop switch to the terminal of emergency stop input so that you can operate it from outside the safety barrier in an emergency.

AWARNING ELECTRICAL SHOCK

- This equipment must be properly grounded as per the national electrical code to prevent potential of electric shock and to reduce to possibility of electrical noise causing an operational error.

RWARNING HOT SURFACE CONTACT may result in burn injury.

- The motor is hot during operation.

Allow sufficient time for cooling before servicing.

- The internal heat sink and cement resistor are hot while operating.

Allow sufficient time for cooling before servicing.

PMARNING

- Replace the fuse and the battery with specified them only.
- Do not place the battery or electrolytic capacitor in fire.

Doing so could lead to explosions.

- Always install the enclosed terminal block cover on the power supply terminal block.

Failure to cover the terminal block could lead to electric shocks when the terminal block is contacted.

DWARNING

- Do not use this robot on body parts, for example as a massage machine.

Personal injury could result from incorrect teaching or operation.

- This robot does not have a sealed structure.

The ball screw grease or belt wear chips could scatter out of the openings during use.
Take measures to prevent entry of this matter when using this robot for applications related to foodstuffs or chemicals, etc.

- Use a rigid installation frame for the robot unit.

If the frame rigidity is insufficient, vibration (resonance) could occur during robot operation and could adversely effect the work.

- Note that the brake at servo motor on the actuator may be released due to either programming the wrong Robot-Type or Memory Initializing.
Input Robot-Type and execute Memory -Initializing correctly.

\triangle CAUTION AMBIENT POTENTIAL OR EQUIPMENT DAMAGE

- Do not install in area where the ambient temperature exceeds $40^{\circ} \mathrm{C}$ or where equipment is subjected to extreme temperature changes that could condensation or where the equipment is subjected to direct sunlight.
Keep the ambient temperature of controller at 0 to $40^{\circ} \mathrm{C}$.
- Do not use in the place exposed heavy shock and vibrations.
- Do not install in environments where conductive dust, corrosive gases, or oil mist are present. Equipment damage will occur.
- Install in a place where are the air convection or provide cooling device.
- High temperature may cause failure or deterioration.
- An ambient temperature increase when it is installed a narrow space since controller itself generates a heat or receive from other devices.

ACAUTION HEAVY

Attempting to manually lift the robot can cause serious injury or equipment damage. Always use suitable lifting equipment.

\triangle CAUTION DISPOSAL

- Contact your state environmental agency for details on disposal of electrical components and packaging in your particular area.

- 1.2 Safe Operation

Take measures to satisfy the following items when using the ROlbot BA series.

■ 1.2.1 Auxiliary safety precautions before ROlbot installation

(1) Install a safety fence to prevent people from entering the area of ROlbot operation.

1. The fence should be strong enough to
 withstand any force it might be expected to encounter during normal ROlbot or other operations. It should not be easy to breach, climb over or move.
2. It should be constructed of safe material with no sharp edges.
3. The foundation should be rigid and immobile.
4. Any door on the fence must be interlocked with the ROlbot so that ROlbot operations stop automatically when the door is opened.
(2) Install an emergency stop device in an easily accessible place to enable an operator to quickly stop the ROlbot in case of an emergency.

5. When an emergency stop switch is operated the braking device must stop the ROlbot quickly without fail.
6. The emergency stop button or other activating device should be red.
7. The activating device must be readily accessible so the operator can easily trigger it by, for example, pressing, pulling, or touching a switch or by blocking a light beam.
8. Once triggered, the emergency stop device must be restorable only through deliberate action of an operator. It must not allow operations to be resumed automatically or through inattention on the part of an operator.
(3) No alteration or modification of the products is allowed.

■ 1.2.2 Precautions for installing the ROlbot

(1) Allow ample clearance for teaching the ROlbot, maintenance operations and inspection.
(2) The ROlbot controller, other control devices must be installed outside the ROlbot's zone of operation, but within easy access of the operator.
(3) The pressure gauge, oil pressure gauge and other indicators must be located so the operator can monitor them easily.
(4) Cover electric cables, oil hydraulic lines and pneumatic pipe lines when necessary to protect them from damage.
(5) Install an emergency stop switch at appropriate locations other than the operator's station.

■ 1.2.3 Precautions for operation of the ROlbot

[Operation inside the actuator operating area]

(1) Safety regulations for personnel working in the actuator's operating area

Safety regulations for personnel working in the actuator's operating area should include, but not be limited to, the following:

1) Basic operations such as starting, stopping and switch handling.
2) ROlbot speed during teaching procedures.
3) Communications, including signals, among operators when the ROlbot is operated by more than one person.
4) Emergency procedures to be taken for malfunctions or abnormal operations of the ROIbot.
5) Procedures to be taken for verifying recovery from abnormal conditions and confirming safety conditions before restarting the ROlbot after it is stopped by an emergency stop device.
6) Procedures to be taken to prevent accidents caused by inattentive operation or mishandling of the ROlbot.

- Precautions including notices on all operation switches.
- Precautions as needed to assure the safety of personnel in the ROlbot's area of operation.
- The exact location of personnel during work. (This should be determined before work begins.)
- Procedures to be taken to prevent malfunctions arising from electrical noise.
- Communications, including signals, between personnel in the actuator operation area and operators of ROlbot and other devices.
- Procedures to determine the cause of a malfunction.

7) The safety regulations must be appropriate for the robot type, installation place and work details, etc.
8) When creating the safety regulations, an effort should be made to obtain the opinions of the related personnel, manufacturer's engineers and labor safety consultants, etc.
(2) Install notices on ROlbot switches to alert personnel that work is underway in the ROlbot operation area and lock the cover to the operator's station.
(3) To secure the zone of ROlbot operation, take measures such as but not limited to the following.
9) Assign a guard to watch the ROlbot operating area to prevent unauthorized persons from entering the operating zone. The guard should be trained to activate emergency stop devices.
10) Personnel working inside the operating zone should carry emergency stop switches.
11) The operator should use a portable operator's station that can be used to turn ON or OFF power to the ROlbot, oil pressure devices, and pneumatic devices.
(4) Make the following inspections before teaching or other operations:
12) Turn the power switch OFF, and check the power cable for damage.
13) Test the actuator to make sure it moves properly.
14) Inspect the control devices and emergency stop devices.
15) Check for leakage in pneumatic pressure lines and hydraulic oil lines.
(5) Procedures for cleaning ROlbot hand tools, such as paint spray nozzles, should be automated so operators do not have to enter the actuator's operating area.
(6) Release residual pressure before disassembling or changing parts in a pneumatic system.
(7) Do not enter the actuator's operating area zone to confirm proper operation.
(8) Maintain proper lighting at the work site.

[Automatic operation]

(1) Notice at the start

Before beginning operation, confirm the following items and confirm communication procedures including hand signals among operators.

1) Make sure no one is inside the actuator operating area.
2) Portable operator stations, tools and devices are located at their assigned sites.
3) Indicators on the ROlbot and auxiliary devices are normal.
(2) Procedures for automatic operation and malfunctions
4) After start, confirm that the indicator shows automatic operation is underway.
5) Before personnel enter the ROlbot's zone of operation to recover the ROlbot or related devices from a malfunction, the operator must activate the emergency stop device and attach an "under repair" message to operation switches and take other measures to prevent others from starting the ROlbot.

- 1.3 Warranty

■ 1.3.1 Warranty period

The warranty period for this product is any of the following periods, whichever expires first:

1) 24 months after the shipment from our plant
2) 18 months after the installation at your site
3) 4000 hours of operation

■ 1.3.2 Warranty details

1) This product is to be warranted. Our warranty covers the specifications and functions that are defined in the specifications, catalog, and instruction manual of the product. We assume no liability for any secondary or incidental damage due to a failure of the product in any circumstances.
2) This product is to be repaired free of charge only if it fails under normal handling and use as defined in the instruction manual attached to the product within the warranty period. The product is to be returned to the plant where it is repaired. If our service engineer(s) is sent to your site at your request, expenses such as transportation and hotel expenses, which are not directly related to the product repair, may be charged separately.

■ 1.3.3 Exemption of liability

The product is not covered by warranty in the following cases:

1) Failure or damage caused by operation which does not conform to the instruction manual or caused by operators' carelessness
2) Trouble caused by deterioration due to aging or wear due to use (e.g., discoloration of painted surfaces or deterioration of consumables*1)
3) Trouble due to sensory sensitivity (e.g., sound emitted in a condition where no adverse effect is exerted on the product functions)
4) Modifying or disassembling the product without our prior approval
5) Failure or damage caused by improper maintenance/inspection or inadequate repair
6) Failure or damage caused by natural disaster, fire, or other external factors
7) Internal data such as programs and points that have been created or changed by the client
8) Taking the product out of Japan that was purchased in Japan
*1: Consumables refer to service/maintenance parts (spare parts) shown in the instruction manual of the product, and parts (e.g., backup batteries) which need periodic replacement.

■ 1.3.4 Notes

1) We cannot guarantee the fundamental performance of this product if it is used beyond the specifications.
2) We assume no liability for any injury accident, damage accident, or failure caused by not observing "WARNING" or "CAUTION" in the instruction manual.
3) Only the warnings, cautions and other safety descriptions we could assume are shown under the "WARNING" and "CAUTION" notices in the instruction manual, which please note.
4) The numeric values shown as technical information are calculated values which indicate approximate durability, and they are not guaranteed. Caution should be taken that the values vary depending on the operating conditions.

This page is blank.

Chapter 2 Devices

■ 0.1 Features

This ROlbot is a new concept arm robot controller for which the Built Block System (BBS) idea has been incorporated to the popular "ROlbot Series".

[Features of axis unit]

- Combinations with BBS method

A built block method (building block method) combination is possible by selecting unit parts such as the axis unit, angle bracket and cable. A system upgrade is possible by further adding optional parts.

- Importance on basic functions

Importance has been laid on achievements and reliability for the main components that configure the robot axis such as the compact AC servo, highly rigid linear guide and grinding ball screw, etc. Downsizing has been pursued amid accurate movement.

- Cable connection

Inter-axis cables are necessary but often become obstacles.
With the CN box and special shape flexible tube, the wiring and piping can be stored and vertical or horizontal layout is possible.

- Corresponding to the needs of the time - Q. C. D.

High quality, short delivery and low cost is realized by the units standardized with the BBS method.

- Absolute encoder compatible

BA II Series mounts the motor with absolute encoder as a standard. The absolute encoder will constantly monitor the motor operation through battery backup even when the power is shut off, so return to origin does not need to be repeated when the system is started.

[Features of controller]

- Compact appearance

The controller at $55 \mathrm{~W} \times 160 \mathrm{H} \times 134 \mathrm{D}$ is as small as the compact AC servo driver that fits neatly into a panel.

- Simple program

The "Easy Mode" for which basic pick \& place operation patterns are created as modes is mounted as a standard.

- Mounting of pulse train input port

The axis can be operated directly with an external controller or programmable controller with pulse generator function, etc. This is used when real-time operations are required.

- Corresponding to globalized production bases

Input voltages from 100 to 120VAC or 200 to 240 VAC can be handled.

* CA20-M40 and S40 can handle 200 to 230 VAC.
- Incorporation of ROlbot language popular for its simple teaching method

Besides teaching with a personal computer, the ROlbot Series Teach Pendant (TPH-4C, TPH-2A) can be used to overcome the ROlbot language and correspond to multitasking.

2.2 System components and specifications

■ 2.2.1 System components
BA II axes UP to 4 axes

*Note: There is not a part of functions in TPH-2A.

■ 2.2.2 Controller specifications

The ROlbot series BA II controller can control one axis with the master unit, but when a slave unit is connected with a link cable, up to four axes can be controlled. Refer to section 2.2.2. (2) for the slave unit specifications.

*Note: CA20-M40/S40 handles 200 to 230 VAC.
Outline drawing
By directly coupling the expansion input/output unit to the master unit and slave unit, the general-purpose input/output can be increased.

(1) Master unit specifications

Applicable robot	ROlbot BA II series		
Controller type	CA20-M10		CA20-M40 (Note 1)
Number of controllable axes	One axis, or two to four axis control with slave unit connection		
Motor capacity (Note 2)	50W 100W	W 200W	400W
Drive method	AC servomotor		
Control method	PTP, Semi-closed loop control		
Teaching method	Remote teaching, Direct teaching or MDI		
Speed setting	10 steps (variable)		
Acceleration setting	20 steps (variable)		
Operation mode	Sequential, Palletizing, External point designation, Easy, Pulse train input		
Operation method	Step, Continuous, Single robot movement		
CPU type	32-bit RISC-SH7145		
Self-diagnostic function	CPU error by WDT, Memory error, Driver error, Power voltage error, Program error, etc.		
Number of programs	Sequential 8, Palletizing 8		
Number of program steps	Max. 2000 steps (total of all tasks)$\quad+999 \times 4$ tasks per coordinate table		
Memory method	FRAM		
Number of counters	99		
Number of timers	9		
Error signal	Error display lamp lights (front panel), Teach Pendant		
External input	System input	24 V 10 mA 4 points	
	General purpose input	24 V 10 mA 4 points (Note 3)	
External output	System output	24 V max. 20 mA 4 points	
	General purpose output	24V max. 300mA 4 points (Note 3)	
Communication function	1 channel for Teach Pendant (RS-232C)		
Power supply	100 VAC to $120 \mathrm{VAC}, 200 \mathrm{VAC}$ to $240 \mathrm{VAC} \pm 10 \% 50-60 \mathrm{HZ}$ Change between the 100 V system and 200 V system using the short bar on the front terminal board		200VAC to $230 \mathrm{VAC} \pm 10 \%$ 50-60HZ
Power capacity (per axis)	100VA 160VA	A 450VA	700VA
Operation conditions	Installation place Indoors		
	Working ambient temperature	0 to $40^{\circ} \mathrm{C}$	
	Working ambient humidity	30\% to 90\%RH With no dew condensation	
	Working ambient atmosphere	With no corrosive gases	
	Storage ambient temperature	-20 to $70^{\circ} \mathrm{C}$	
	Storage ambient humidity	With no dew condensation	
	Storage ambient atmosphere	30% to $90 \% \mathrm{RH}$ With no corrosive gases	
	Vibration $9.8 .8 \mathrm{~m} / \mathrm{s}^{2}$ or less		
Dimensions	$55(\mathrm{~W}) \times 160(\mathrm{H})$ Excluding installa	$\text { H) } \times 134 \text { (D) }$ lation fittings	$\begin{array}{\|c} \hline 85(\mathrm{~W}) \times 160(\mathrm{H}) \\ \times 134(\mathrm{D}) \\ \text { Excluding } \\ \text { installation fittings } \\ \hline \end{array}$
Mass	0.93 kg		1.36 kg

NOTE (Note 1) To use CA20-M40, be sure to use regenerative electrical-discharge unit ABSU-4000.
(Note 2) The applicable motor capacity is displayed on the controller front panel. Connection with the motor with different capacity causes the motor to burn out. Do not connect the motor with different capacity.
(Note 3) The number of general-purpose input/output points will be reduced when the signals using the general-purpose input/output terminals are assigned.

(2) Slave unit specifications

Applicable robot	ROlbot BA II series		
Controller type	CA20-S10		$\begin{aligned} & \hline \text { CA20-S40 } \\ & \text { (Note 1) } \end{aligned}$
Number of controllable axes	One axis (with connection to master unit)		
Motor capacity (Note 2)	50W 100W	200W	400W
Drive method	AC servomotor		
Error signal	Error display lamp lights (front panel), Teach Pendant (Connect to master unit)		
External input/output	General purpose input	24 V max. 10 mA 8 points	
	General purpose output	24 V max. 300 mA 8 points	
Power supply	100 VAC to $120 \mathrm{VAC}, 200 \mathrm{VAC}$ to $240 \mathrm{VAC} \pm 10 \% 50-60 \mathrm{~Hz}$ Change between the 100 V system and 200 V system using the short bar on the front terminal board		$\begin{aligned} & \text { 200VAC to } \\ & 230 \mathrm{VAC} \pm 10 \% \\ & 50-60 \mathrm{~Hz} \\ & \hline \end{aligned}$
Power capacity (per axis)	100VA 160VA	A 450VA	700VA
Operation conditions	Installation place	Indoors	
	Working ambient temperature	0 to $40^{\circ} \mathrm{C}$	
	Working ambient humidity	30% to 90% RH With no dew condensation	
	Working ambient atmosphere	With no corrosive gases	
	Storage ambient temperature	-20 to $70^{\circ} \mathrm{C}$	
	Storage ambient humidity	30\% to 90\%RH With no dew condensation	
	Storage ambient atmosphere	With no corrosive gases	
	Vibration	$9.8 \mathrm{~m} / \mathrm{s}^{2}$ or less	
Dimensions	$55(\mathrm{~W}) \times 160(\mathrm{H}) \times 134$ (D) Excluding installation fittings		$\begin{gathered} 85(\mathrm{~W}) \times 160(\mathrm{H}) \\ \times 134(\mathrm{D}) \\ \hline \end{gathered}$
Mass	0.91 kg		1.34 kg

NOTE (Note 1) To use CA20-M40, be sure to use regenerative electrical-discharge unit ABSU-4000.
(Note 2) The applicable motor capacity is displayed on the controller front panel. Connection with the motor with different capacity causes the motor to burn out. Do not connect the motor with different capacity.

（3）Various units and options

The following units and options are available for the ROlbot．（ঋOption）

Part name	Type	Application
$\dot{\sim}$ Teach Pendant	TPH－4C，TPH－2A＊	For programming
Expansion input／output unit	CA20－EX－A20	Expanded input： 12 points，output： 8 points
Input／output cable	CA10－IC－AD0	For master unit and slave unit
Input／output cable（for expansion input／output）	CA10－IC－Bロ0	For expansion input／output unit
Link cable	CA10－LC－Aロロ	Between master unit and each slave
\star Personal computer software	$\begin{array}{\|l} \hline \text { SFI-98D } \\ \text { (CD-ROM) } \end{array}$	Program creation and data maintenance（for Windows）
$\underset{\sim}{*}$ Communication cable	PCBL－31	Connection cable between personal computer and controller
	ABSU－2000	Electrical－discharge unit for regenerative voltage suppression（for 50－200W）
	ABSU－4000	Electrical－discharge unit for regenerative voltage suppression（for 400W）

＊Note：There is not a part of functions in TPH－2A．

■ 2.3 Explanation of each part

■ 2.3.1 External dimensions and explanation of each part

- 2.3.2 Function of each part

(1) Status display LED

This LED displays the status of the controller. The green LED lights when the power is ON, and the red LED lights when an error has occurred.
(2) Teach Pendant connector

This connector is used to connect a Teach Pendant or a communication cable (option) for connecting a personal computer.
(3) Motor output connector and encoder input connector A controller cable is connected to this connector.
(4) Input/output connector

An external control unit (sequencer (programmable controller), etc.) is connected to this connector.

ACAUTION
Turn the controller power OFF before connecting or disconnecting the motor output, encoder input or input/output connectors.
If a connection is made while the power is ON , the controller could malfunction.
(5) Terminal board

The power input terminal, power voltage changeover terminal, FG (Frame Ground) and LG (Line Ground) terminals are provided on this board.

ACAUTION

 Incorrect wiring of the power supply, incorrect connections (mismatch of supplied power voltage and power voltage and power voltage changeover terminal, disconnection of LG and FG, and other disconnections), and incorrect connections of input/output connectors could cause controller faults, malfunctioning, or malfunctioning of the entire system.(6) Communication connector

The slave unit (option) link cable is connected to this connector.
(7) Regeneration output connector

The regenerative electrical-discharge unit (option) is connected to this connector.
(8) Terminator setting switch

This switch is used to connect a terminator for communication when a slave unit is connected.
(9) Station No. setting switch

This switch is used to set the station No. of each slave unit when a slave unit is connected and multiple axes are controlled. The master unit is set to 0 .
(10) Expansion input/output connection connector

The expansion input/output unit (option) is connected to this connector.
(11) Battery input connector

This connector is used to connect the battery harness (option). This is used when using the absolute encoder.
(12) Analog monitor connector: Note: This connector is used for adjustment by manufacturer. Do not connect the equipment to this connector.

2.3.3 Explanation of expansion input/output unit

(1) External dimensions

(2) Names of each part

The expansion input/output can be connected to the master unit or slave unit.

■ 2.3.4 Explanation of Teach Pendant

- ESC key

The operator can use this key to exit the function key mode.

- F1 to F4 key

These keys perform various functions.

- RUN/PRGM key

This key is used to toggle between run and program modes.

- HOME key

This key executes Return to Origin.

- START key

The key executes the program.
The program will be executed from the step currently stopped at.
When using a multitasking, the program will be executed from the multitasking step currently stopped at.

- CLEAR key

The key clears the input item, and release alarms.

- STOP key

Program execution is terminated after the current step is completed.

- SEQUN/PALET key

This key is used to toggle between the sequential mode and palletizing mode. When the key is pressed, the mode will alternate.

- HELP key

An explanation of the current function is displayed.
When this key is pressed once, the initial screen is displayed. When it is pressed again, the next screen is displayed.

- ALT key

This key is used to change and select input data other than values in program or parameter mode.
This key is also used to change the display task in the RUN mode or program mode.

- SEARCH key

This key is used to search for step No., tag No., parameter No. and table No.

- B SKIP key

This key is used to reversely shift the cursor.

- DIRECT/JOG key

When this key is pressed in servo-lock condition, JOG mode (manual operation mode) is enabled, and JOG operation of the axis can be executed by using Move keys. When this key is pressed in servo-free condition, Direct Teaching is enabled.

- FREE/LOCK key

This key is used to set the ROlbot in servo-lock condition or release it. When the ROlbot is in free-lock condition, the FREE signal lamp on the Teach Pendant lights.

- MOVE keys

These keys are used to execute JOG operations for each ROlbot axis. An axis moves while its corresponding key is pressed. Each key corresponds to the first axis or second axis. The plus and minus on the keys indicate the direction of movement.

- Commands and ten keys

These keys are used for programming. Main commands and numbers are indicated on the keys. When a key is pressed the command or number is entered at the position of the cursor.

- -NEXT key

This key is used to display the step and the parameter preceding the one currently on display.

- NEXT key

Displays the step and the parameter ahead of the one currently on display.

- ENT key

Writes commands and other data into a step in the program.

- Emergency stop switch

Push-lock and turn-reset switch. Pressing this switch causes the robot to enter the emergency stop state. To clear emergency stop, turn the switch clockwise to unlock the switch, and then press the CLEAR key.
$?$ In servo-free condition, the ROlbot is separated electrically from the control system, and the axis arm can be moved freely by hand.
In the servo-lock condition, the ROlbot axis is connected electrically to the controller, which controls the ROlbot's position. It cannot be easily moved by hand.

■ 2.4 Procedures from installation to operation

The procedures for installing the ROlbot to operating the ROlbot are as follow.
Reference page

1) Installing the axis

Axis Installation Section
2) Installing the controller Section 2.4.1
3) Connecting the emergency stop circuit Section 2.4.5
4) Connecting the axis and controller Section 2.4.4
5) Connecting with the external control unit (programmable controller, etc.)

Section 10.1.5
6) Checking supply power and grounding wires

Section 2.4.2
7) Checking each wiring (Make sure that none of the polarities are mistaken.)
8) Connecting the Teach Pendant to controller

Section 2.4.4
9) Supplying the designated power supply. (POWER ON)

Section 2.4.2
10) Setting the robot type

Section 2.4.7
11) Setting the task and axis combination

Section 13.4.15
12) Setting the soft limit Section 2.4.8
13) Home return

Section 2.4.8
14) Adjusting the servo gain

Section 2.4.9
15) Entering program mode and starting program write

Section 3.2
16) Completing the program (Check that there are no mistakes.)
17) Confirming program with step operation (STEP mode)
18) Trial operation
19) Adjustment
20) Operation

Operate ROlbot with the above steps while referring to the reference page.

- 2.4.1 Installing the controller

The controller uses a natural cooling method through convection. When installing the controller, place it vertically as shown below, and leave a space of 30 mm * or more around it so that the ventilation holes on the top and bottom are not blocked.
If the ventilation is insufficient, the sufficient performance will not be achieved, and faults could occur.

* If the controller is installed in parallel with regenerative electrical-discharge unit ABSU-4000, the space depends on the installation dimensions of ABSU-4000.

Front surface installation

Rear surface installation

Make sure that foreign matter such as fluids or dust does not enter the controller from the ventilation holes.
This unit does not have a dust proof structure. Avoid use in dusty places.

- 2.4.2 Supply power and grounding

The power voltage supplied to the CA20-M10/S10 can be either 100VAC system or 200VAC system by changing the VOLTAGE SELECT terminal's short bar on the terminal board. The power voltage supplied to the CA20-M40/S10 can only be 200 VAC system.

CA20-M10/S10	100VAC system: Single-phase 100VAC to 120VAC $\pm 10 \%$ 200VAC system: Single-phase 200VAC to 240VAC $\pm 10 \%$	$50 / 60 \mathrm{~Hz}$
CA20-M40/S40	200VAC system: Single-phase 200VAC to 230VAC $\pm 10 \%$	$50 / 60 \mathrm{~Hz}$

- Power input terminal (AC IN)

When used in Japan, the supply voltage is normally $\pm 10 \%$ in respect to the nominal voltage. However, if the voltage fluctuation is particularly large, connect a constant voltage device externally.
To change between the 100VAC system and 200VAC system, short circuit the VOLTAGE SELECT terminal with the enclosed short bar to select 100VAC, and leave the terminal opened to select the 200VAC system.
Use the CA20-M40/S40 with the 200 VAC system left open.

(a) For 100VAC system

(b) For 200VAC system

- Frame ground (FG)

This terminal is connected to the cabinet. To prevent electric shocks, carry out Class 3 grounding by connecting the dedicated wire.

ACAUTION
A surge absorbing element is provided between the controller's power line and cabinet. Confirm that the supply power is 290 V or less between the power line and grounding, and then connect. If the power between the power line and grounding is 290 V or more, the absorbing element could be damaged and the controller could be damaged.

- Surge absorber dedicated terminal (LG)

This terminal is provided in addition to the FG terminal to protect the circuit from external lightening surges or noise, etc.

When installing the controller, short circuit the LG and FG terminals with the enclosed jumper fitting so as to protect the circuit from external lightening surges and noise, etc.

Normally (when shipped from the factory) LG and FG are short circuited with a jumper fitting. When carrying out an insulation resistance test (500V megger test) or withstand voltage test (1000VAC), the results may appear faulty due to the current leaked by the surge absorber. In this case, remove the jumper fitting between LG and FG before carrying out the tests.

- 2.4.3 Improvement of noise resistance

A line filter is built into the controller, but using the following measures to further improve the noise resistance is recommended.

- Insert a power line insulation transformer (1:1) or noise filter.

Install the ground terminal near the power source.

- Avoid installing the controller near high-voltage devices (induction hardening machines, electric welding machines, etc.).
- Install the controller at a position 200 mm or more away from the power wire.
- When treating the input/output signal and controller cables, if the high voltage wires and power wires are bundled together, malfunctioning could occur due to induction. Thus, separately wire these wires.
- Use Class 3 or higher grounding (grounding resistance 100Ω or less) for the controller grounding.
- If the grounding wire is used also for other devices, an adverse effect could occur.

Good

- When connecting induction load to the output, connect a diode or surge killer in parallel.

Output terminal

- 2.4.4 Connecting the axis and controller

Connect the axis and Teach Pendant to the controller as shown below.

Items marked with a * are to be prepared by the user.

- Control of multiple axis

The master unit can control one axis by itself, but by connecting a slave unit for one to three axes with link cables, up to four axes can be controlled.

(1) Connecting the controller

To connect the master unit and slave unit, use the communication connectors (COMM1, COMM2) on the front side, and connect a link cable between COMM2 on the master unit to COMM1 on slave unit 1, and between COMM2 on salve unit 1 to COMM1 on slave unit 2.

Master unit Slave unit 1 Slave unit 2 Slave unit 3

(2) Setting station No.

When controlling two or more axes, the station No. must be set with the station No. setting switch on the top of the unit so that the hardware of each unit can recognize the station No. Set the master unit's station No. to "0", and the slave unit station No. to "1" to "3". If other settings are made, or if the same No. if set for the slave units, a communication error will occur.

	Master unit	Slave unit
Setting of station No.	Set to "0"	Set to "1" to "3"

Top view of controller

(3) Setting of task and axis combination

This setting is made with parameter 2. Refer to the task and axis combination settings given in section 13.4.15.

(4) Setting terminator

When multiple units are connected, the end of the communication line must be treated so that the communication will be accurate. This end treatment is possible by setting a terminator and setting the terminator setting switch on the unit to ON. When using three or four axes, turn ON bit 1 and bit 2 of the terminator setting switch on the unit (master unit and slave unit with open COMM2) at the end of the communication line. Leave the switches set to OFF for all other units. When using two axes, turn ON bit 1 and bit 2 of the terminator setting switch on the master unit and slave unit. When using one axis, leave these bits set to OFF.
[For four-axis combination]

- 2.4.5 Connecting the emergency stop circuit

Before using the ROlbot, always connect the emergency stop circuit to the enclosed input/output connector. If this circuit is not connected, the controller will enter the emergency stop state.
For details, refer to section 10.1.2 (1).

- 2.4.6 Effect of leakage current

This controller (master unit, slave unit) controls the motor assembled into the axis with PWM (Pulse Width Modulation). Thus, a high frequency leakage current (Cf•dV/dt) that do not affect the human body will flow through the cable from the controller to motor and the motor's floating capacity (Cf). General leakage breakers, excluding those for high frequencies, normally detect the leakage current at the same level between the low frequency and high frequency regardless of the frequency zone. Thus, the leakage breaker will function when the leakage current in the high frequency zone exceeds the operating frequency of the leakage breaker.

Measures when leakage breaker functions needlessly by high frequency leakage current
(1) Use a high frequency and surge corresponding leakage breaker. Use a leakage breaker that is sensitive to the high frequency element leakage breaker contained in the controller's leakage current to prevent needless functioning.
(2) Decrease the floating capacity between the controller and ground.

Select as short a controller cable as possible to be used between the controller and axis.
ACAUTION Always ground the controller with Class 3 or higher grounding (grounding resistance 100Ω or less) to prevent electric shock accidents.

ACAUTION
Needless functioning of the leakage breaker could occur in a separate system that is not directly related to the circuit connected to the controller because of leading in of the leakage current.

■ 2.4.7 Setting the Robot Type

Inputting the Robot Type enables you to automatically set various parameter values according to the axis to be used.

Enter the task combination before entering the robot type of each axis.
Use the numeric keypad to enter the task No. of each station and press ENT. (A setting other than 0 to 4 will be invalid.)
Press ALT to display the next screen.
Press ESC to return to STEP 3.
? Refer to section 13.4 .15 for details.
[1] [0] [0] [0]
[1] [2] [0] [0]
[1] [2] [2] [0]
[1] [2] [3] [0]
[1] [2] [3] [3]
[1] [2] [3] [4]
[1] [2] [2] [3]
[1] [1] [0] [0]
[1] [1] [2] [0]
[1] [1] [2] [2]
[1] [1] [2] [3]

Task 1
1-axis specifications
1 -axis specifications 1 -axis specifications 1-axis specifications 1 -axis specifications 1-axis specifications 1-axis specifications 2-axis specifications 2-axis specifications 2-axis specifications 2-axis specifications

Task 2

Task 2
No axis
1-axis specifications
2-axis specifications
1-axis specifications
1-axis specifications
1-axis specifications
2-axis specifications
No axis
1-axis specifications
2-axis specifications
1-axis specifications

Task 3
No axis
No axis
No axis
1 -axis specifications
2 -axis specifications
1 -axis specifications
1 -axis specifications
No axis
No axis
No axis
1 -axis specifications

Task 4
No axis
No axis
No axis
No axis
No axis
1-axis specifications
No axis
No axis
No axis
No axis
No axis

■ 2.4.8 Setting the software limit and Return to Origin

Software limits can be defined to prevent the ROlbot from overrunning its maximum safe operating limits within the range of the ROlbot axes.
The software limit is set to the positive and negative range of movement of a motor drive shaft.
The limits on the movement range can be changed easily by software, but it is not easy to do so using hardware.
To set the software limits, use the Teach Pendant and follow the directions below.

STEP 1 Turn ON the power. After the first display at left
 is shown, press the F1 key.
Then, press the $\left.\begin{array}{c}\text { RUN } \\ \text { RRGM }\end{array}\right)$ key to set the program mode.

STEP 2 Press HELP.

Use the numeric keypad to enter the plus soft limit coordinates and press ENT. Next, press NEXT

- 2.4.9 Servo gain adjustment

There are two kinds of gain in the servo mechanism of this ROlbot: position gain and speed gain. They are set through parameter 1. Generally, a larger servo gain enables higher speed response in the servo mechanism and a smaller servo gain enables smooth movement of the ROlbot. An inappropriate gain setting can cause overshoot or undershoot. It can also result in vibration and noise. Normally, the appropriate servo gain is set automatically when the Robot Type (six-digit figure) is entered. However, when you have to adjust the gain according to actual load conditions of the ROlbot, adjust it following the instruction below.

NOTE There are 100 gain settings, 0 to 99. Change the gain setting little by little according to the Robot Type's preset value while checking the ROlbot movement.

- Servo gain (position)

When high speed response is desired, set the value of the servo gain for positioning to a larger value. Note that if it is set too large, hunting (oscillation) can occur. If this happens, adjust it to a smaller setting. A smaller value will enable smoother movement of the ROlbot, but the positioning time increases with smaller values.

- Servo gain (speed)

Set the servo gain for speed at a value one lower than the level at which the motor begins to generate small vibration in servolock condition (the motor is stopped with the power ON.) When the value is set too large, beat noise will be caused by small vibration of the motor. In this case, set it to a smaller value.
When the servo gain for speed is too low, low frequency hunting (oscillation) occurs in the motor. In this case, set the gain to a larger value. When the value is set too small, an overflow error can be generated because of the delayed response to a command of the motor.

■ 2.4.10 Absolute encoder backup

All AC servomotors with BA II axis mount the absolute encoder. The encoder is backed up with a battery, etc. to constantly monitor the motor operation even when the power to the controller is shut off. This enables smooth starting without the need for return to origin when starting the system or recovering from emergency stop.

NOTE When the encoder type in the parameter (refer to section 13.4.14) is set to the incremental encoder, the absolute function does not operate even if the backup power is connected.

- Installing the lithium battery

One lithium battery for encoder backup comes with each unit of this ROlbot. Put the lithium battery in the battery holder on the top of the controller and connect it to the battery input connector as shown below.

Top view of connector
? Install the lithium battery on all controllers.

- Lithium battery specification

Item			Description	Remarks
Part name			Lithium battery	Thionyl chloride lithium battery
Type No.			CA20-EB-05	Main unit of battery: ER3V (Toshiba Battery)
Specification	Nominal voltage and capacity		3.6 V 1000mAh	
	Outside	Main unit of battery	$\phi 14.5 \times 26 \mathrm{~mm}$ (Excluding protrusion)	
		Harness length	$\begin{aligned} & 50 \pm 5 \mathrm{~mm} \\ & \text { (Excluding connector) } \end{aligned}$	
		Mass	About 10 kg	
Backup duration time (Note 1)			About 50,000 hours (Note 2)	$25^{\circ} \mathrm{C}$, backup current $20 \mu \mathrm{~A}$

NOTE (Note 1) The backup duration time is the cumulative time when the power to the control is off.
(Note 2) The duration time of the battery depends on the temperature, etc. Set the numeric value as a measure of the duration time.

- Battery input connector signal names and pin Nos

No.	Signal name	Meaning
1	EBAT	Backup power +
2	EBA0	Backup power -

NOTE If the polarity is mistaken, the backup will not be possible and faults could occur.

- Controller side connector type No.

L header DF3-2P-2DS(01) (Hirose Electric Co., Ltd.)

- Harness side connector type No.

Crimp socket DF3-2S-2C (Hirose Electric Co., Ltd.)
Socket crimp terminal DF3-2428SCFC
(Hirose Electric Co., Ltd.)
[Applicable wire size: AWG22 to 28 (0.33 to $0.1 \mathrm{~mm}^{2}$)]

- Backup specification

Item		Specification	Remarks
Backup voltage		3.6VDC (Standard) 6.5VDC (Maximum) 2.5VDC (Minimum)	The controller surface LED flickers at 2.7 VDC or less (voltage drop alarm).
Current consumption	When the controller is not energized	$20 \mu \mathrm{~A}$ (Standard) $30 \mu \mathrm{~A}$ (Maximum)	$25^{\circ} \mathrm{C}$ Up to 2 mA instantaneously
	When the controller is energized	$3 \mu \mathrm{~A}$ (Standard)	
Maximum response rotation speed during backup		$5000 \mathrm{~min}^{-1}$	

- Encoder-related errors

(1) Battery voltage drop alarm

When the backup power becomes 2.7 V or less, the state LED on the controller surface flickers in green as an alarm. If multiple axes are used, only the LED on the controller with the relevant axis flickers in green. Error output will not turn ON.
(2) Encoder backup error

An encoder backup error occurs in the following cases. Reset input or pressing the [CLEAR] key on the Teach Pendant can clear this error.

- If the power is turned on for the first time after the main unit of axis (motor) is connected to the controller
- If the encoder cable connector is temporarily removed during backup
- If the backup power becomes 2.5 V or less and normal backup cannot be done when the power is not supplied to the controller
(3) Encoder error

An encoder error occurs in the following cases. Turn on the power again. Reset input and pressing the [CLEAR] key on the Teach Pendant cannot clear this error.

- If normal backup cannot be done because the motor rotation speed exceeds 5000 min-I
- If the motor rotation speed exceeds 200 min-I during power on
- If the encoder cable connector is removed or the encoder cable is disconnected while the controller is energized

If an encoder error and encoder backup error occur, the absolute counter value will be unreliable. Thus, the axis movement will be inhibited unless return to origin is carried out. When these errors occur, axis movement will be inhibited unless return to origin is carried out for all axes besides the axis for which the error occurs.
? If an encoder error or encoder backup error and other error (emergency stop, etc.) occur concurrently, the error other than the encoder-related errors may be displayed, depending on the order of occurrence. Thus, it may not be apparent that an encoder-related error has occurred. If the error message "RETURN TO HOME NOT COMPLETED!" appears during axis movement after the error is cleared, an encoder error or encoder backup error may have occurred concurrently.

2.5 Moving the ROlbot

Now, let's try moving the ROlbot with a simple program following the flow chart below.

No. 1

No. 2
Connect the axis and controller. Set the station No. Set the terminator.

No. 3
Turn ON the power.

No. 4

(Refer to section 2.4.5)
(Refer to section 2.4.4)

Connection and setting of devices
(Refer to section 2.4.7)
(Refer to section 2.4.8)
No. 5

No. 6
No.

No. 7
Write the program
SPD: Speed setting
MOV: Move
TIM: Wait interval
MOV: Move
HOME: Return to origin
END: Program end

No. 8
Return to the first step.

No. 9

No. 10

No. 11
Program ends. STEP 0001 is displayed and the ROlbot stops.

When the software limit is set and Return to Origin movement is completed following the key operation procedures explained in section 2.4.8, the display below is shown. The display indicates that the controller is now in sequential AUTO mode corresponding to the No. 5 stage of the flow chart.
Let's try moving the ROlbot with a simple program.
When writing a program press ENT to move the cursor forward.
Press the NEXT key to move to the step ahead of the one currently displayed. Press the - NEXT key to move to the step just before the one currently displayed.

NOTE You can enter the data displayed on the screen into the controller by pressing the NEXT or -NEXT key when the display is changed.
Note that the ENT key does not enter data into the controller.
Writing programs

STEP 2 The screen shows an initial display of PRGM mode.
This is stage No. 6 of the flow chart.

STEP 3 Press the $\frac{\text { SPD }}{7}$ key to select the speed command, then press the ENT key. Input the speed No. 1 with the numeric keypad and press ENT. The speed is now defined. Press the NEXT key to go to the next step.

STEP 3B The cursor moves to point a (absolute coordinate), so just press ENT.

The cursor moves to point table No. position, so use the numeric keypad to enter No. $=1$ and press ENT.

[PARA]	$X=0000.00$
PNT-TBL	$Y=0000.00$
NO. 001	

STEP 3D Next, press F1

STEP 3E Use the numeric keypad to enter coordinate $\mathrm{X}=300$ and press ENT. Then enter coordinate $\mathrm{Y}=300$ and press ENT

STEP 3F After pressing ESC , press ENT.
The cursor moves to speed No. (V=00). Confirm $\mathrm{V}=00$ and press ENT.

0004 a S NO=002
MOVP V=00 CNT [00] POST
[PARA] $\quad X=0200.00$
PNT-TBL $Y=0200.00$
NO. 002

STEP 5 As in STEP 3A to STEP 3H, enter MOVP as shown at left. Here, 2 is input as the point table No., and the coordinate $\mathrm{X}=200$ and $\mathrm{Y}=200$ data is input.
With this command, movement to $X=200$, $\mathrm{Y}=200$ is set.
Press NEXT to display the next step.

$\begin{array}{ll}\text { STEP } 6 & \text { Press } F 1, \begin{array}{c}\text { IN } \\ 1\end{array} \text { and } \begin{array}{c}\text { MOV } \\ 9\end{array} \text {, select the } \\ & \text { HOME command, and press ENT. The }\end{array}$ ROlbot will execute Return to Origin.
Press NEXT to display the next step.

STEP 8 Press -NEXT five times and program STEP 0001 will be displayed. This is stage No. 8 in the flow chart.

- You have now completed the program.
- Program execution

STEP 9 Press $\begin{gathered}\text { RUN } \\ \text { RRGM }\end{gathered}$ to enter the sequential AUTO mode. Now, press START.

STEP 10 The program will be executed as it is displayed on the screen.
$R \quad \mathrm{U}$! !!!

[AUTO]

STEP 11 When program execution ends, program STEP 0001 will be displayed and the ROlbot will stop.

Chapter 3 General Programming

- 3.1 Explanation of operation modes

The ROlbot is provided with the following types of operation modes.

(1) Sequential mode

The sequential mode is a mode used to execute or program in order of steps. With the sequential mode, the operation program is structured from the beginning, so operations more complex than the easy mode or palletizing mode are possible.
By using multitasking, up to four sequential programs can be executed simultaneously.
Refer to Chapter 4 for details on the sequential mode, and Chapter 5 for details on multitasking.

(2) Easy mode

In the easy mode, after moving with a movement command, the hand operation subroutine is called and the next step to be executed is designated. With pairs of steps, programming and execution can be carried out easily without creating a complex structure.

(3) Palletizing mode

The palletizing is a mode exclusive for moving and loading. In this mode, operation is carried out using a mode program and by inputting matrix information that indicates the movement point and loading state, etc.
The following types of modes are prepared in the palletizing mode.

- 1 to M mode

Movement from set position (source side: S) to matrix-type point configured with X and Y axes (destination side: D)

M to 1 mode

Movement from matrix-type point configured with X and Y axes (source side: S) to set position (destination side: D)

- M to M mode

Movement from matrix-type point configured with X and Y axes (source side: S) to matrix-type point configured with X and Y axes (destination side: D)

Refer to Chapter 7 for details on the palletizing mode.

(4) External point designation mode

The external point designation mode does not use the controller's command language. The point table, speed table and acceleration/deceleration table are input beforehand with the Teach Pendant, and by directly designating these tables from an external source with general-purpose inputs, movement takes place.
Refer to Chapter 8 for details on the external point designation mode.

(5) Pulse train input mode

The pulse train input mode is a mode that moves and controls the axis by inputting the pulse that corresponds to the movement amount from an external source. The master unit functions as a pulse train input type servo driver. The movement amount and speed are decided by the No. of pulses and frequency of the pulse generator, by that increasing the real-time feel. However, protective functions for home return operations and soft limit, etc., must all be provided from the external controller.
Refer to Chapter 9 for details on the pulse train input mode.

■ 3.1.1 Explanation of RUN mode

The RUN mode is a mode that operates the robot. The mode can be divided into the AUTO mode and STEP mode. Both the AUTO and STEP modes can be operated in the sequential, easy and palletizing modes.

(1) AUTO mode

By pressing the start key, the program displayed on the Teach Pendant will be executed in order of the step numbers.
Normally continuous operation takes place, but if the single mode setting is validated, when the system input is started or when the Teach Pendant start key is pressed, the I/O input single signal state (ON: single operation, OFF: continuous operation) will be determined. Operation stops and the single operation can be started, after a specific command (axis movement related or output related command) is executed in the sequential mode; directly after movement in the easy mode; and after movement to the S (source side), D (destination side) is completed in the palletizing mode.
(2) STEP mode

When the start key is pressed, one step of the program displayed on the Teach Pendant will be executed, and the operation will stop. To execute the following program, press the start key again.
When multiple tasks are operated using the multitasking function, one step of the task displayed on the Teach Pendant will be executed and then will stop. The other tasks will stop when the step being executed is stopped at the time the displayed tasks have stopped.

■ 3.1.2 Explanation of PRGM mode

The PRGM mode is used to program the various operations for sequential, easy and palletizing modes with the Teach Pendant or to set the point tables for the external point designation mode. The program screen differs for each mode, so follow the cursor that appears on the Teach Pendant and input the data.
Functions handy during programming such as copy, delete and search are provided. Refer to each chapter for details on the operation methods.

- PARA mode

The various parameters related to operation of the robot are set in this mode. These parameter can also be set from the PRGM mode.
There are some parameters that will not be validated until the power is turned OFF and ON after making a setting, and some that will be validated when the PARA mode is quit. Follow the screen displayed on the Teach Pendant and input the data.

■ 3.1.3 Return to Origin

In the sequential RUN mode, if the absolute encoder is being used, the program can be executed without Return to Origin unless recovering from an encoder related error (NOTE).
When using the incremental encoder, the commands other than the axis related commands (MOVP, MVB, MVE, MVM,) will execute the program even without the Return to Origin, so if the program is programmed to execute a HOME command before the axis related command is executed, Return to Origin will not be required by pressing the HOME key or inputting Return to Origin before the program is executed.
(Note) Errors requiring Return to Origin even when absolute encoder is used.

- DRIVER ENCODER ERROR
- ENCODER BACKUP ERROR
- ENCODER CHANGEOVER ERROR
(Refer to Chapter 19 Error Messages for details.)

- Operation possible

(using an incremental encoder)

- Operation not possible

(using an incremental encoder)

3.2 General programming

The operation system diagrams of the Teach Pendant in each mode are shown in this section.

Key operation system diagram for BA II type
Sequential/palletizing

Key operation system diagram for easy mode
[RUN mode]

Key operation system diagram for external point designation mode
[RUN mode]

Key operation system diagram for pulse train mode
[RUN mode]

■ 3.2.1 Basic programming

This section explains basic ROlbot programming, using examples of a Teach Pendant display. The following illustration shows a display of sequential mode in PRGM (program) mode.

NOTE In programming single-axis ROlbot operation, enter only the X axis (1st axis) coordinate. If you enter the Y axis coordinate, it is ineffective.

- Operation mode

The mode selected by the Teach Pendant is displayed. [PRGM] is displayed for PRGM mode, and [RUN] is displayed for RUN mode.
In case of TPH-2A, when PRGM mode is selected, a green indicator lights, when AUTO mode is selected, a red indicator lights and when STEP mode is selected, a red indicator blinks.

- Program step No.

A maximum of 2,000 steps can be written in the sequential mode. The next step of the currently displayed step can be shown by pressing the NEXT or NEXT key. In case of TPH-2A, note that one command may be displayed in two successive screens. When two successive screens are used for the display of a step, an open parenthesis "(" appears on the front screen and a close parenthesis ")" appears on the second screen. Thus, the first and second screens for the command display can be identified.

- Commands

Various commands are selected by pressing the command key, function key or numeric keypad. The command is then written by pressing ENT.

- Parameters for commands

When a command is being written, the cursor automatically moves to a field where a parameter should be entered. Write the parameter and press ENT.

- Tag No.

In sequential mode, the tag No. (1 to 999) can be written in steps from No. 0001 to No. 2000. Tag Nos. have the following uses:
(1) Designating the step to jump to in a JMP command.
(2) Fetching a subroutine. Enter a tag No. at the beginning of a subroutine, then you can fetch it by using a subroutine call command. To end a called subroutine, enter RET.
(3) Selecting a program No. A tag No. (1 to 8) can be selected by PSEL (program selection) command as a program No.

- Counter

Counter No. Counter initial value

A counter (01 to 99) is a type of variable. Counter contents can be added or subtracted in a rate of 0 to 9999 . In the above example, counter No. 01 is defined at step 0006, and the counter initial value is set to 1 .

- Timer

Four timers can be used to count time. The maximum value is 999.9 seconds. In the above example, timer No. 1 is used at program step No. 0008, and a 5 -second wait is set.

■ 3.2.2 Position data input

The following three methods can be used to input the position data for the coordinate table (used in the sequential mode, external point designation mode), easy mode and palletizing mode.

(1) Remote teaching

When you are programming while the ROlbot is in servo-lock, use this method to move the ROlbot to the desired location.

(2) Direct teaching

With this method, the servo lock is released during programming, and the position is directly taught by the operator directly moving the robot arm to the required position. If the axis is provided with brakes, the brakes will be applied during the servo-free state, so direct teaching is not possible.

(3) MDI (Manual Data Input)

Use the Teach Pendant keys to enter the coordinates of the desired location.
The teaching methods will be described below using the Teach Pendant displays.
In the coordinate tables, easy mode and palletizing mode, the screens for entering the position data will differ. The screens in each mode will be used for explanations, but the operation methods are the same. For the palletizing mode, the M to M screen is used as an example.
(1) Remote teaching procedures

Remote teaching procedures of the position data are given below. These procedures can be executed during programming in PRGM mode.
[Coordinate table input screen]

STEP 1 Move the cursor to the position shown at left, and press $\binom{$ DRECT }{ joa } .
$\left[\begin{array}{l}\text { Easy mode coordinate input } \\ \text { screen }\end{array}\right]$

$\left[\begin{array}{l}\text { Palletizing mode coordinate } \\ \text { input screen }\end{array}\right]$

NOTE - When the cursor is not located at the position shown in the above display, remote teaching cannot be executed.
When $\binom{$ DiRECT }{ Joc } is pressed when the cursor is not located at the position shown in the above display, jog operation to only move the axis will take place. (Refer to section 17.5.)

- If Return to Origin has not been executed before $\left.\begin{array}{c}\text { DIRECTT } \\ \text { JOG }\end{array}\right)$ is pressed, an error alarm sounds and remote teaching mode cannot be entered.
[Common screen]
[PRGM] $\quad X=0000.00$

REMOTE $Y=0000.00$
TEACHING
SPD:LOW

STEP 2 Remote teaching screen is displayed and JOG operation can be executed in remove teaching mode.
Toggling of speed operation can be executed by pressing ALT .
LOW (low speed) and HIGH (high speed)

NOTE - Movement of the axes in JOG operation is done by pressing the +1 and -1 keys for the first axis and the +2 and -2 keys for the second axis. If the key is a plus key, the axis will move in the direction opposite the origin while the key is held down, and if it is a minus key will move in the direction of the origin.

- The JOG operation speed can be set with the JOG speed in parameter 1. (Refer to section 13.3.7.)
- Inching movement in JOG operation can be performed by pressing and quickly releasing the MOVE keys $(+1)+-1$). The distance of an inching movement can be set by JOG increment of parameter 1. (Refer to section 13.3.8.)
[Coordinate table input screen]
 controller moves to an appropriate point. Then, release the key to stop the axis and press ENT. The current coordinates will be entered.


```
[PRGM]02
    SO ORG
01 X= 0096.00
M-M Y= 0000.00
```


(2) Direct Teaching Procedures

The method to carry out direct teaching of the position data in the PRGM mode is described below.
[Coordinate table input screen] STEP 1 Press $\begin{gathered}\text { FREE } \\ \text { LOCK }\end{gathered}$ and the "FREE" will be

$\left[\begin{array}{l}\text { Palletizing mode coordinate } \\ \text { input screen }\end{array}\right]$
 displayed. The axis will be in servo-free condition. Move the cursor to the point shown at left and press $\left.\begin{array}{c}\text { DiRECT } \\ \text { JOG } \\ \hline\end{array}\right)$.

NOTE - When the cursor is positioned at a point other than the one shown in the display above, Direct Teaching cannot be executed.

- The axis provided with brakes will be stopped when the $\binom{$ FREE }{ LOCK } key is pressed.
- If Return to Origin has not been executed before the $\binom{$ DREECT }{ JOG } key is pressed, an error alarm sounds and Direct Teaching mode cannot be entered.
[Common screen]
[PRGM] $\quad X=0000.00$
DIRECT $Y=0000.00$
TEACHING
FREE

STEP 2 Direct Teaching screen is displayed and Direct Teaching can be executed.
[Coordinate table input screen]
STEP 3 Move the axis manually to a desired position
 and press ENT. The current coordinates will be entered.

[EASY]01 $X=0096.00$
$001 \mathrm{~V}=00 \mathrm{Y}=0000.00$
TAG:000
FREE

$\left[\begin{array}{l}\text { Palletizing mode coordinate }\end{array}\right]$ input screen

[PRGM] 02	SO ORG
01	$X=0096.00$
M-M	$Y=0000.00$
FREE	

[Common screen]

STEP 4 Press (FREE $\begin{gathered}\text { FREE } \\ \text { LOCK }\end{gathered}$ to release the servo-free condition, and the display at left will appear. Then, press ENT and the axis will be servo-locked. When ESC is pressed, the display returns to STEP 3.

NOTE Direct teaching cannot be used with an axis equipped with a brake, because the brake will be activated in servo-free condition. Use Remote Teaching for an axis equipped with brakes.
(3) MDI (Manual Data Input) method

The method to teach the position data in the PRGM mode with MDI is described below.
[Coordinate table input screen]

STEP 1 Move the cursor to the point shown at the left, enter the set coordinates with the numeric keypad, and press ENT

$\left[\begin{array}{l}\text { Palletizing mode coordinate } \\ \text { input screen }\end{array}\right]$

[Coordinate table input screen]

STEP 2 Move the cursor to the point shown at the left, enter the set coordinates with the numeric keypad, and press ENT
$\left[\begin{array}{l}\text { Easy mode coordinate input } \\ \text { screen }\end{array}\right]$

$\left[\begin{array}{l}\text { Palletizing mode coordinate } \\ \text { input screen }\end{array}\right]$

NOTE Surely set the coordinate value within the stroke of the axis being used.

■ 3.2.3 Memory Clear (Initialization)

- The memory in the controller that stores the programs and parameters can be initialized (cleared).

NOTE When the memory is initialized, the various parameters in the memory will be initialized, and the sequential, palletizing and easy mode programs will all be cleared.

- The memory can be initialized by operations from the PRGM (program) mode or by not turning ON the Teach Pendant (T/P).
(1) Method to initialize the memory from the PRGM (program) mode

Enter the PRGM (program) mode and press HELP. The following will display. (Refer to section 4.1.1.)

When F3 is pressed, the clear mode will be entered. Press ESC to return to the initial screen of the program mode.

STEP 5 To clear the memory, press ENT, and to not clear the memory press ESC.

STEP 6 Follow the instructions on the screen, and turn the controller power OFF.

NOTE • After the memory is initialized, the robot type "510100" (single axis specifications) parameter will be set. When using a type other than "510100", set the robot type again. Moreover, the task combination is initialized as follows.
A0 A1 A2 A3
[1] [0] [0] [0]

- Refer to the Instruction Manual (Axis Installation Section) for how to set the robot type.
(2) Method to initialize the memory without turning the Teach Pendant ON (T/P ON) after turning the power ON
The memory of the ROlbot can be initialized without turning the T/P ON (validating the Teach Pendant) after the main power is turned ON. Use this method when an error occurs and the memory cannot be initialized from the PRGM (program) mode.

TEACHING PENDANT

STEP 1 Turn the power switch ON.
TPH-4C Ver. 2. 10
The initial screen will display for two seconds.

```
POWER F1:T/P ON
    -ON F2:
F3:CHANG TASK F4:EXTENSION
```

STEP 2 After the initial screen ends, the following screen will display.
Press F4.

STEP 4 Press F1 in this state.

The following steps are the same as STEPS 6 and 7 on the previous page.

■ 3.2.4 MOV system command words and parameters

The MOV system commands and their parameters which can be used on the machine are herein described.
If any of the MOV system commands is commanded, the relevant axis will be moved as commanded, and there are 5 kinds of the commands as follows.

MOVP Linear interpolated movement (coordinate table assignment)
MVB Last position movement (return to the last position)
MVE Escape movement
MVM Palletizing movement
HOME Return to origin
For the using method of the command words, refer to "Chapter 18 Commands".
To input MOV system command (excluding HOME), input parameters as shown below.

(1): Axial speed (S) and linear speed (T)
(2): Absolute coordinate position (a) and relative coordinate position (i)
(3): Position (POST) and pass point (PASS)

The method to use (1) through (3) is hereafter described.
(1) Axial speed (S) and linear speed (T)

For the movement from Point A to Point B as shown below, the X-axis speed of the longest movement stroke is instructed as the speed V when the axial speed (S) is selected, and the axis composed speed is instructed as the speed V when the linear speed (T) is selected.
However, if any axis exceeds the maximum speed set by the parameter, the movement speed of the axis will be at the maximum speed, and the other axes will move at such speeds as all axes simultaneously arrive at the target position.

(2) Absolute coordinate position (a) and relative coordinate position (i)

When the absolute coordinate position (a) is selected, the target position becomes the coordinate position according to the origin point (coordinate $\mathrm{X}=0, \mathrm{Y}=0$). When the relative coordinate position (i) is selected, the target position becomes the relative movement amount from the axis position at the time of the command execution start. For example, when the current position is Point A (coordinate $X=20, Y=10$) and the movement amount is $X=50, Y=30$, the target position of Point B becomes as shown below.

Absolute coordinate position (a)

Relative coordinate position (i)

NOTE -When OFS command is used, the absolute coordinate position is gained by adding the amount which is set with OFS command.

- The relevant coordinate position movement during the MOVP or MVE commands will be the relative movement from the axis position when the execution of that command starts.
-When the first axis movement after the axis stops due to an error during the axis movement command is designated as a relative coordinate position, the movement will be relative from that coordinate position and will not be the commanded start position before the error occurred.
- In the same manner, if an absolute encoder axis is connected, and the first axis movement after the axis stops due to the power being turned OFF and ON during execution of an axis movement command is designated as a relative position, the movement will be relative from that coordinate position and will not be the commanded start position before the power was turned OFF.
(3)Position (POST) and course (COSE)

If a position (POST) is selected for movement to a target position on the way when consecutive MOV system commands are executed, control waits at the target position until robot positioning is completed, and moves to the next point when the positioning is completed.
If a course (COSE) is selected, control moves to the next point without waiting for the completion of robot positioning.
Robot tact time can be reduced by using a course (COSE) in operation which does not need to wait for an exact position.

Examples of operation
If the robot moves as shown in the figure on the right, point $A \rightarrow$ point B \rightarrow point C , the operation differs between when a position (POST) is selected for the point B and when a course (COSE) is selected for the

Move command to the point B	Operation
Position (POST)	
Course (COSE)	

Chapter 4 Sequential Mode

■ 4.1 Sequential PRGM mode

Sequential programs are structured of a command words written in as series of steps.

■ 4.1.1 How to enter and leave PRGM (program) mode

The PRGM mode is used for programming, setting parameters, and for controlling direct output. The method for entering and leaving the PRGM mode (sequential mode) will be described in this section.

■ 4.1.2 Editing of steps in sequential program

- In sequential programming, steps can be inserted or deleted either individually or as a block.

Individual step deletion/insertion
First, define the program step No. to be inserted or deleted, and display it on the screen. Refer to section 15.1 for details on searching for the step No. Insert the new step before the displayed step and move down the remaining program steps in the controller's memory. For a deletion, erase the target step and move up all successive steps in memory. Press HELP in program mode to show the following display. (Refer to section 4.1.1.)

STEP 2 To insert a step, press F1
Press F2 to delete a step.
To return to the initial screen in the PRGM mode, press ESC.

[INS]

0005
NOP
STEP 3A In inserting a new step, the instruction field will indicate a NOP instruction. When successive insertion is necessary, press F1 again. Press ESC to return to PRGM mode after the insertion.

STEP 3B When a step is deleted in delete mode, all successive steps are moved up. When successive deletions are necessary, press F2 again.
Press ESC to return to PRGM mode after the deletion.

- In sequential programming, a series of steps can be deleted in a block.

To delete a block, set the program mode and press HELP. The following display will appear. (Refer to section 4.1.1.)

To return to the initial screen in the PRGM mode, press ESC.

STEP 4 Use the numeric keypad to enter the Nos. of the first and last steps to be deleted.
Press ENT. NOP instructions are indicated for all steps deleted, and the program returns to STEP 3. Pressing ESC returns the display to STEP 3.

■ 4.1.3 Copy editing of sequential programs

A series of steps can be copied in a block from one program and entered into another. Set the program mode and press HELP. The following display will appear. (Refer to section 4.1.1.)

NOTE - When program steps in which tag Nos. are written are copied, the tag No. in the smaller step No. or the smaller tag No. will be effective after copying.

- To prevent a double tag error, change the tag Nos. after copying.

■ 4.1.4 Clearing of sequential programs

All of the sequential programs in the controller memory can be cleared (all steps can be returned to NOP).
For multitasking, the program of the currently displayed task will be cleared. Change the task before carrying out the following steps. (Refer to section 5.3 .2 (1).)
Enter the PRGM mode and press HELP. The following screen will display (Refer to section 4.1.1.)

STEP 2 When F3 is pressed, the clear mode will be

STEP 3A To clear the sequential program alone, Press

F2: PALET
F3:SEQ/PALET
F4:PAGE

STEP 4A To clear the program, press ENT. To not clear the program, press ESC.

The sequential program and palletizing programs can be cleared in a batch. The sequential program that can be used from the palletizing program is the main task (task No.1), so the programs of tasks other than the main task will not be cleared with this operation.
In this case, press F3 at STEP 2, and display the following screen.

STEP 4B To clear the program, press ENT. To not clear the program, press ESC.

- 4.1.5 HELP function in entering a command

When function keys are used to enter a command in PRGM mode, pressing HELP displays the input number of each command.

Press F1. The following display appears:

STEP 1 Press HELP when this display is shown.

[HELP]	HELP:PAGE
10:PSEL	$11: 0 F S$
12:MVB	$13:$ MINI
14:MVM	$15:$ LOOP

STEP 2 Press HELP again, when the command to be entered is not shown.

STEP 3 Press HELP again when the command to be entered is not shown.

[HELP]	HELP:PAGE
22:	$23:$ TSTR
24:TST0	$25:$ TRSA
26:TCAN	$27:$

STEP 4 See the input number of the command to be entered. Pressing HELP returns to STEP 2. Press ESC to return to STEP 1 and use numeric keypad to input the input number.

■ 4.1.6 Method to restart operation of sequential mode after turning power OFF

With this ROlbot, even if the power is turned OFF, the program can be restarted from the step where the program was stopped when the power was turned OFF. However, this is only limited to when the program was stopped with the Teach Pendant or by inputting stop with the system before the power was turned OFF.
Refer to section 10.2.6 for details on the data, etc., that is held until the program is restarted. This function can also be used to restart operation that has been stopped with emergency stop input.

Use the following procedure to restart the operation.
(1) Designate the restart input bit in the mode setting with the Teach Pendant.
(2) When the power is turned OFF and then ON again in the state with restart ON, the operation can be restarted after return to origin is completed.

NOTE - The mode settings given in sections 11.2.2, 11.2.12 and 11.2.13 must be made to use the restart function. Use the initial values for the status setting when restart is valid.

- Restart is not possible if the power is turned OFF while a program is being executed. An error will occur.
- During normal operation, the restart input functions as a general-purpose input.

<Example>

[Starting of sequential program]

Counter is initialized. (0)
The general-purpose output state is OFF.

NOTE There are cases where Return to Origin does not need to be carried out. Refer to section 3.1.3 Return to Origin.

■ 4.1.7 Palletizing work with MVM commands

In the palletizing mode described in Chapter 7, palletizing operation can be carried out by just setting various data and not using commands.
However, if a mode is used for the palletizing operation, there will be some restrictions to the degree of operation freedom. To cover for these demerits, the degree of operation freedom and complex palletizing operations can be used by creating a program using MVM commands. (Sequential movement operation such as 1 to M, M to $1, M$ to M and on matrix.)

[Example]

- Correspondence of pallet on which work are arranged in a zigzag pattern.
- Transferring of works on pallet according to passing and failing state, etc.

■ Procedure for carrying out palletizing work with MVM commands

1. Setting of MVM table details	Set the data such as the matrix (pallet, etc.) shape. (Refer to section 13.5 .4 MVM table setting.)
2 . Setting of coordinate table details Set the data of the coordinate table used with the MVM table. (Refer to section 13.5.1 Setting of coordinate (ables.)	

4. Execution of program (Refer to section 4.2 Sequential RUN mode.)

?
S side: Source
D side: Destination

(1) Explanation of MVM table

The MVM table is used to set the matrix (pallet, etc.) shape, etc.
For the matrix shape as shown above, the parameters are set in the MVM table as shown below.

Point	Coordinate table No.
P0	11 Point coordinate table No.(*1)
P1	(3) Point coordinate table No.(*1)
P2	4 Point coordinate table No.(*1)

Direction	No. of matrixes	Applicable counter No.
P1	$3\left({ }^{* 2)}\right.$	$1\left({ }^{*} 3\right)$
P2	$2\left({ }^{*} 2\right)$	$2(* 3)$

One group (GRP)

The set of table data as shown above is called one group (GRP).
A total of 32 tables (GRP = No. 1 to 32) can be set.
*1: Explanation of coordinate table No.

- The P0, P1 and P2 coordinates set the points of each matrix end.
- The coordinates are set indirectly using the coordinate table No. so the actual coordinate data must be set in the coordinate table.
- "0 to 999" can be set for the coordinate table No.
- If the matrix only has one row, set P0 and P1 to the normal values, and set P2 to "0".
- P0 does not always have to be set to the point closest to the origin. The operation order can be changed by changing the P0. P1 and P2 coordinate settings.
*2: Explanation of No. of matrixes
- Set the No. of matrixes in the P1 direction and in the P2 direction.
- "0 to 9999" can be set for the No. of matrixes.
- If the matrix only has one row, set P1 to the normal value, and set P2 to "0".
*3: Explanation of applicable counter
- The applicable counter is used to control the matrix movement (MVM command).
- "0 to 99" can be set for the applicable counter.
- If the matrix only has one row, set P1 to the normal value, and set P2 to "0".

(2) Relation of P0, P1, P2 coordinate setting and operation pattern

Even if the same program is executed, the operation pattern can be changed by changing the coordinate settings of P0, P1 and P2 set in the MVM table.
The following is an operation example of when the 1 to M program given on the next page is executed.

[Operation example]

Set the (1) coordinates in P0.
Set the (3) coordinates in P1.
Set the (4) coordinates in P2
[Operation pattern]
To execute the 1 to M program.

$$
\begin{aligned}
\text { (A) } & \rightarrow \text { (1) } \rightarrow \text { (A } \rightarrow \text { (2) } \rightarrow \text { (A) } \rightarrow \text { (3) } \\
& \rightarrow \text { (A) (4) } \rightarrow \text { (A) } \rightarrow \text { (5) } \rightarrow \text { (A) } \rightarrow \text { (6) }
\end{aligned}
$$

Set the (4) coordinates in PO.
Set the (6) coordinates in P1.
Set the (1) coordinates in P2.
[Operation pattern]
To execute the 1 to M program.

$$
\begin{aligned}
\text { (A) } & \rightarrow \text { (4) } \rightarrow \text { (A) } \rightarrow \text { (5) } \rightarrow \text { (A) } \rightarrow \text { (6) } \\
& \rightarrow \text { (A) } \rightarrow \text { (1) } \rightarrow \text { (A) } \rightarrow(2) \rightarrow \text { (A) } \rightarrow \text { (3) }
\end{aligned}
$$

(3) Relation of counter details and movement position

The MVM command is a command that looks at only the P1 and P2 direction counter details and moves the unit.
The relation of the counter details and movement point is shown below.

Details of MVM table

PO: (1) point coordinates
P1: (3) point coordinates
P2: (4) point coordinates
No. in P1 direction: 3
No. in P2 direction: 2
P1 direction counter: No. 1
P2 direction counter: No. 2

MVM table setting counter		Movement destination point when MVM command is executed with the counter details given on the left.
Details of counter No. 1	Details of counter No. 2	
1	1	$(2$
2	1	(3)
3	2	(4)
1	2	$(5$
2	2	$(6$

(4) Example of palletizing work program using MVM commands

Details of MVM table
P0: (1) point coordinates
P1: (3) point coordinates
P2: (4) point coordinates
No. in P1 direction: 3
No. in P2 direction: 2
P1 direction counter: No. 1
P2 direction counter: No. 2

[Operation pattern 1 to M]

(A) \rightarrow (1) \rightarrow (A) \rightarrow (2) \rightarrow (A) \rightarrow (3) \rightarrow (A) \rightarrow (4) \rightarrow (A) \rightarrow (5) \rightarrow (A) \rightarrow (6) \rightarrow Origin

The flow of the 1 to M program example as shown above is given below.

[Explanation of changing counter details]

The counter details when the MINI command is executed are initialized to "1". When the MVM command is executed, point (1) will be moved to.
The LOOP command will increment the counter No. 1 details by one during the movement from point (1) to (3).
When moving from (3) to (4) the counter No. 1 details are initialized to "1", and the details of counter No. 2 are incremented by "1".
(Counter No. 2 details: 1 to 2.)
When moving from (4) to (6) the counter No. 1 details are incremented by "1".
When the pallet movement is completed, the program will jump to the tag No. set with the LOOP command.

The program example given on the previous page will be explained with the Teach Pendant screens.

- Writing of program

Enter the sequential PRGM mode. Write the following command in step 0001.
(For this example, the program will be written from step 0001.)
The following screen will display. (Refer to section 4.1.1.)
Refer to "Chapter 18 Commands" on how to input the commands.

0002
0002
TAG 100
TAG 100

STEP 2 Assign a tag No.

```
[PRGM]
0003 a S NO=000
MOVP V=00 CNT[OO]
POST
```

STEP 3 Move to the S side set point with the MOVP command.

CAL 200

STEP 4 Call the tag No. of the hand program on the S side set point side. The hand program is a subroutine program that carries out handling work.

STEP 5 Write the MVM command. With this command, the point on the D side (destination) will be moved to.

STEP 6 Call the tag No. of the D side hand program, and carry out the handling work.

STEP 7 The MVM table (GRP No. 01) counter will be incremented by 1. When the counter used for each axis reaches the No. of the MVM tables, tag No. 400 will be jumped to. If the number is not reached, the program will jump to tag No. 100, and will realize the loading by carrying out STEP 2 to 6 following the counted counter.
? If the details of the designated counter reaches the set No. and the MVM loop is ended (LOOP END), the program will jump to the THEN tag. If not ended (ELSE), the program will jump to the ELSE tag.
It is configured of the jump commands with IF~THEN $\cdot \cdots$ ELSE conditions attached.

STEP 8 Assign a tag No.

STEP 9 Carry out return to origin.

STEP 10 End the program.

- 4.2 Sequential RUN mode

This ROIbot can be operated with the following methods.

- Continuous operation, signal operation of the AUTO mode
- STEP mode

■ 4.2.1 AUTO mode of sequential mode

(1) Continuous operation

Carry out operation in the STEP mode and confirm the operation before starting operation in the AUTO mode.

Operation using Teach Pendant

Turn ON the power switch. After the initial screen displays, the following screen will display, so press F1 and HOME to carry out return to origin. (There are cases where Return to Origin does not need to be carried out. Refer to section 3.1.3 Return to Origin.)

STEP 2 In this state, the sequential mode's RUN mode will be entered. Press NEXT or -NEXT to display the first step of the program to be executed.

STEP 3 After displaying the step to be executed, press START.

STEP 4 When the program is being executed, RUN!!! will display.

If STOP is pressed, the program will stop after completing the step currently being executed.
To restart the program, press START again.
AWARNING
If the EMERGENCY STOP button is pressed, the robot will coast to a stop. The stopping distance will differ according to the load size, speed and inertia.

STEP 5 When the program END command is completed, the program will return to step No. 0001, program step 1 will display, and the operation will stop.

Operation with external signals

Use the following procedure to carry out operation with the external signals. Refer to section 17.1 on how to disconnect the Teach Pendant.

[Operation procedures]

1. Carry out return to origin with the system input return to origin. (There are cases where Return to Origin does not need to be carried out. Refer to section 3.1.3 Return to Origin.)
2. Input the start signal to execute the program from step 0001. If there are multiple tasks in the multitasking, the execution will start with step 0001 of the main task.
3. If the stop signal is input during operation, the program will stop after ending the program step currently being executed.
4. To restart from the step where the program was stopped, input the start signal.
5. To start from step 1 , input the reset signal and then input the start signal. If the restart function is valid, the reset input will be ignored. Refer to section 10.2.6 for details.

(2) Single operation

During single operation, the program will stop once after the axis movement or output related operation is executed. To start or restart the program, input the start signal or press START. Normally this is used to verify a program.

An example of single operation is given below.

1. Turn the single operation input signal ON.
2. The following operations are basically the same as continuous operation. (Refer to section 4.2.1 (1) Continuous operation.)
3. When the program has stopped operation, press START or input the start signal to sequentially start the program.

- The single operation mode input bit setting in the mode setting must be set. (Refer to section 13.2.1.)
- Operation with either the Teach Pendant or external signal is possible.
- The single operation input signal must retain the ON state during single operation. If the single operation input signal is turned OFF during single operation, the remaining program will be continuously operated.
- Even if the single operation input signal is input during continuous operation, it will be ignored, and continuous operation will continue.
- The following commands can be used for stopping after execution.

MOVP, MVB, MVE, HOME, MVM
OUT, OUTP, OUTC

■ 4.2.2 STEP mode of sequential mode

The STEP mode is used to execute the program in the controller one step at a time. When multiple tasks are operated using the multitasking function, one step of the task displayed on the Teach Pendant will be executed and then will stop. The other tasks will stop when the step being executed is stopped at the time the displayed tasks have stopped. Use this mode to confirm the program operation, etc., before executing the program in the AUTO mode.

STEP 1 Turn ON the power switch. After the initial
 screen displays, the following screen will display, so press F1 and HOME to carry out return to origin. (There are cases where Return to Origin does not need to be carried out. Refer to section 3.1.3 Return to Origin.)

STEP 2 In this state, the sequential mode's RUN mode will be entered. Press HELP.

STEP 3 When this screen displays, press F1. The STEP mode will be entered.

```
[STEP]
0005 a S NO=002
MOVP V=00 CNT[00]
    POST
```

STEP 4 Press NEXT or -NEXT to display the first step of the program to be executed. After displaying the step to be executed, press START.

STEP 5 When the program is being executed, RUN!!! will display.

```
[STEP]
0006 a S NO=003
MOVP V=00 CNT[00]
    POST
```

STEP 6 The next step will display and the robot will stop. When next step will be executed when the START key is pressed. After this, the program will be executed in the step order, and will stop after each executed.

The search function can be used in this mode. This is handy for confirming the jump conditions, etc., in the program by using the tag No. search. Refer to Chapter 15 for details on the search function.

NOTE The timing of the input signal and output signal during operation with the STEP mode will be differ compared to operation during the AUTO mode.

4.2.3 Changing of speed during operation (override)

The entire program execution speed can be delayed by using the override function. This allows the program to be confirmed at a low speed.

Use the numeric keypad to enter the override value. When ENT is pressed, the speed will change to the set speed. Press ESC to return to the RUN mode. (Initial value: 100)
(Override value: 1 to 100)

NOTE The override setting is valid only while the program is stopped.

This page is blank.

Chapter 5 Multi-task

■ 5.1 Multitasking

Multitasking refers to executing multiple tasks simultaneously. The multitasking referred to with this controller refers to executing multiple programs simultaneously. This multiple execution of programs is asynchronous operation in which the programs do not interfere with each other.
However, the start of the command execution can be synchronized using commands dedicated for multitasking, and using counters and timers I/O common between the tasks.

■ 5.2 Merits of multitasking

The explanation will follow the case of creating a system that unloads the part from the conveyor and places it on the work table.
When the axis is moving to move the part to the work table, the conveyor must be operated to supply the next part to the unloading position.

- When multitasking is not used

In addition to the robot, a programmable logic controller (PLC) for controlling the conveyor will be required.
Due to this, the system will become complicated as wiring for interlocks, etc., will be required. This will in turn lead to a larger and more expensive system.
If the conveyor is controlled with the robot I/O instead of using a PLC, the conveyor cannot be used while the axis is moving, and thus the tact time will increase.

- When multitasking is used

The I/O such as the conveyor control and the axis movement can be controlled simultaneously, so a system can be structured without using a PLC, etc. Thus, the wiring is simplified and the system is less expensive. Control can be carried out just with the controller program, so the system development and maintenance are simplified.

■ 5.3 Multitasking usage methods

Each task program is the same as the conventional sequential program. The multitasking settings and the programming methods will be described below.

■ 5.3.1 Multitasking specifications

Mode	Only sequential mode
Max. No. of tasks	4
Max. No. of axes	4 Note that only two axes can be used per task
No. of program steps	2,000 (total of all tasks) Note that the easy program area is used for step 1001 and following.
Max. No. of coordinate tables	999×4 (total of all tasks) Note that when only the master unit is used, 999 tables can be set per task.

■ 5.3.2 Multitasking functions and settings

(1) Changing the task to be displayed and edited

Only one task can be displayed on the Teach Pendant's sequential program display.
To change the task targeted for display or editing, carry out the following operation while the RUN mode or PRGM mode sequential program step is displayed.

First press ALT.
Using the numeric keypad enter the task No. (01 to 04) in this state.
The displayed task will change when ENT is pressed.

NOTE It is impossible to change to a task in which the step number is 0 (the error tone PPPP is generated if changed).
(2) Setting the task and axis combination

The CA-10 controller can use up to four tasks, and up to two axes can be set per task.
To use up to four tasks, (for example, to use only one axis), assign the axis to task No. 1, and set the No. 2 to 4 tasks as tasks with no axis designation. Then, execute a command other than the axis related command (movement command, etc.).
Refer to section 13.4.15 Setting of task and axis combination for the setting methods.

(3) Setting the No. of task steps

As the total for the four tasks, up to 2,000 steps can be set for the program.
If the No. of steps is set to 1,001 or more, the easy program area will be cleared in use. Thus, the easy program cannot be used.
Refer to section 13.4.18 Setting the No. of task steps for the setting methods.

(4) Setting the positioning output

The system output positioning completed output (pin No. 13) will turn ON when the positioning of all axes is completed.
The output that turns ON when a specific axis completes positioning can be designated with a port and bit described in section 11.2.18 Setting of positioning complete output.
(5) Setting the Return to Origin complete output

The system output Return to Origin completed output (pin No. 14) will turn ON when all axes have returned to the origin.
The output that turns ON when a specific axis completes the return to origin can be designated with the port and bit described in section 11.2.19 Setting of Return to Origin complete output.

■ 5.3.3 Starting and stopping tasks

One of the four tasks is the main task.

(1) Starting the tasks

If start is applied by the Teach Pendant or system input, task 1 (main task) will start.
The other tasks will start with the TSRT command.

(2) Stopping the task

If stop is applied by the Teach Pendant or system input, all task will stop when the command being executed at that point is completed. The step No. will remain that at the stopped time, and will be used for executed when start is applied again.
The other task can be stopped with the TSTO command. To stop the task itself, use the STOP command.

(3) Restarting the task

The task will start from the step where the main task was stopped.

(4) Ending a task

If stop is applied by the system output, all task will stop when the command being executed at that point is completed. The step No. will remain that at the stopped time, but if reset is applied from the system No., step No. will change to 1 and be the same as the end state.
The task will end (enter the stop state, and step No. will return to 1) when the END command is executed. However, if the main task executes the END command, all task will end when the command being executed at that time. Thus, all tasks will be canceled. To avoid this, use a counter to apply a timing between the tasks (refer to section 5.3.5), and create a program so that the main task does not execute the END command until the other tasks end.
The tasks other than the main task can be ended with the TCAN command.

■ 5.3.4 Multitasking operation

The method for creating and running a multitasking program will be explained in this section. The case for controlling two steps of 2 -axis combinations such as $\mathrm{X}-\mathrm{Y}$ and four controllers will be described.

STEP 1 Set the task and axis combination with the task axis setting in the PARA mode. (Refer to
section 13.4.15)
In the example on the left, the station No. 0 and No. 1 axes are controlled by task No. 1, and the station No. 2 and No. 3 axes are controlled by task No. 2.

STEP 2 Set the No. of steps in each task with the No. of
[PARA]K18 T1=0500
TASK T2=0500
STEP NUM. T3=0000
T4=0000
[PARA]K15
TASK COMBINATION
A0 A1 A2 A3 [1][1][2][2] task step setting in the PARA mode. (Refer to section 13.4.18)
In the example on the left, 500 steps are assigned to each task No. 1 and No. 2. Changing to a task with zero steps is not allowed.

STEP 3 Next, enter the program in task No. 1. Enter the sequential PRGM mode, and press ALT. The display shown on the left will appear.
Use the numeric keypad to enter the task No. 01, and then press ENT. The display task will change.

STEP 4 Enter the TSTR command for starting task No. 2.

When start is input from the Teach Pendant or system input, the main task (task No. 1) will start.
Task No. 2 will start with the TSTR command at the beginning of task No. 1.
Enter the task No. 1 program in sequential order for the steps that follow.

STEP 5 Next, enter the program in task No. 2.
Enter the sequential PRGM mode, and press ALT . The display shown on the left will appear.
Use the numeric keypad to enter the task No. 2, and then press ENT. The display task will change.
Sequentially enter the task No. 2 program in the following steps.

STEP 6 When completed entering the program, enter the RUN mode and press START. The program will start from the head of task No. 1.
Use the operation described in STEP 3 to change the task display.

■ 5.3.5 Applying timing between tasks

A timing is applied to multiple tasks that run in association by using a counter as shown below.

■ 5.4 Details on multitasking

Information important for efficiently using the multitask function is described below.

■ 5.4.1 Task status

With the multitasking, multiple task can be executed simultaneously by executing other task during the task's open time.
The following four task states exist.
(1) Stopped state

State in which nothing is occurring. (No tasks have been started.)

(2) Execution state

State in which task is being executed.

(3) Ready state

State waiting for task processing priority.

(4) Wait state

Status in which task is waiting.
Waiting refers to positioning complete waiting, input waiting, timer waiting.
Commands with wait states \cdots MOVP, MVB, MVE, IN, TIM, MVM, HOME

■ 5.4.2 Transition of states

(1) Starting the task

The main task (task 1) will start when start is input from the system, or when started with the Teach Pendant.
The task stopped from the execution state will enter the ready state with the task start command (TSTR).

(2) Ending the task

When the task being executed executes the END command, that task will end. The step No., for the ended task will change to 1 , and the task will stop. If the END command is executed with the main task, all tasks will end when the commands for all tasks are completed.
If the task being executed executes the TCAN command, the task will end when the task command designated with that command is completed. The main task cannot be ended with the TCAN command.

(3) Restarting the task

The main task will enter the execution state from the stopped step, and the other task will enter the ready state.

(4) Execution state and ready state

The task with the highest task processing priority of the task in the ready state will enter the execution state in the following cases.

- When the execution state task enters the wait state.

The task that is waiting will enter the ready state when a waiting occurs.

- When the execution state task executes a branch command.

The task that executes the branch command will enter the ready state at the branch designation step.

- When the execution state of a task continues for one second or more.

When one second or more has passed, the step being executed will end, and the ready state will be entered.

■ 5.4.3 Transfer of data between tasks

The same counters and timers are used for all tasks, so a value can be set with one task and referred to by another task, or the data or status can be transferred by using condition judgment commands such as JMPC or CALC.

■ 5.4.4 Task priority

If there are multiple tasks in the ready state and the execution state task enters the wait state or a branch command is executed, the priority to move the ready state task to the execution state is set.

This page is blank.

Chapter 6 Easy Mode

Easy mode is a mode in which movement to each point, and simple sequential operation such as operation of the hand after completing movement can be done without creating a program. In other words, the movement commands, calling of the hand operation subroutine, and designation of the step to be executed next are configured as a pair of steps per program, allowing programming and execution to be carried out without a complicated configuration.

The easy mode program can have a maximum of 100 steps per program, and eight programs can be created.

No. of programs:Eight programs
No. of steps: 100 steps/program
The following subroutine programs used in the easy mode are created in the sequential program.

- Hand subroutine:Sequential program executed a point after to moving to it such as when operating the hand, etc.
- Start subroutine: Sequential program executed before moving to the point.
- End subroutine: Sequential program executed after the easy mode operation ends.

This controller can execute multiple sequential programs with multitasking, but the only sequential program that can be executed from the easy mode is task No. 1.

■ 6.1 PRGM mode of easy mode

Before using the easy mode, validate the easy mode in the mode setting. Refer to section 6.1.1 for the setting method.

■ 6.1.1 How to enter and leave the easy mode

Display the easy mode setting screen in the PARA mode. (Refer to section 13.2.10.)

[EASY]01 $\quad X=0000.00$ $001 \mathrm{~V}=00 \mathrm{Y}=0000.00$ TAG:000

STEP 2A
The easy mode will be validated and the initial screen of the PRGM mode (easy) will display.
[EASY] $01 \quad X=0000.00$
$001 \mathrm{~V}=00 \mathrm{Y}=0000.00$
TAG:000

STEP 1B [How to leave the easy mode]

Press F4.

[PARA] F1:SET MODE
F2: PARAMETER1
F3: PARAMETER2
F4: TABLE

STEP 4B
Leave the easy mode and display the screen shown on the left. Press ESC and the PRGM mode screen for the selected mode will display.

■ 6.1.2 Editing easy mode program

The items input for the easy mode are as follow.

(1) Program No. 1 to No. 8 setting

Program No. 1 ------- Program step 001 to 100
Program No. 2 ------- Program step 101 to 200
Program No. 3 ------- Program step 201 to 300
Program No. 4 ------- Program step 301 to 400
Program No. 5 ------- Program step 401 to 500
Program No. 6 ------- Program step 501 to 600
Program No. 7 -------- Program step 601 to 700
Program No. 8 ------- Program step 701 to 800

(2) Setting of start tag No.

Set the tag No. of the start subroutine program to be executed before moving to the point. No program will be designated if the tag No. is set to 000.

(3) Setting of point coordinates

Input the coordinate values in the point table No.
MDI, remote teaching or direct teaching can be used to input the coordinate values. (Refer to section 3.2.2.)

NOTE The coordinate data will be written into the coordinate table of the point table No. that is the same as the step No.
(4) Setting of speed

Set the speed to move to the point at.
(5) Setting of hand subroutine tag No.

Set the tag No. of the sequential program to be executed after moving to the point.
(6) Setting of number of repetitions

Set the number of times to execute the series of operations. (0 to 9999 times)
If 0 is designated, the operations will be repeated infinitely.
(7) Setting of end tag No.

Set the tag No. of the sequential program to be executed after the easy operation ends.
(8) Setting of branch conditions

Set the branch designation and branch conditions.
Input condition, counter condition, timer condition or unconditional branching is possible.

(9) Setting of end

Designate the end step of the easy operation. (Input and display "*".)
NOTE Always set the end. If an end is not set, a step No. error will occur during execution.

A flow chart of the easy mode operation is shown below.

(10) Setting of reservation tag No.

The hand subroutine creates a random program in the sequential program, but when carrying out predetermined operation such as pick \& place of the work (operation to move the air cylinder vertically, pick up the work by opening/closing the chuck, and placing the work), a subroutine program with fixed details can be used.
The reservation tag No. refers to the tag No. of this fixed subroutine program. By designating the reservation tag No., a sequential program does not need to be created, and the required operations can be carried out.
When using the reservation tag No., external devices such as a solenoid and limit switch must be connected beforehand to the assigned general-purpose input/output ports.
The general-purpose input/output ports for the external devices (air cylinder, hand, limit switch) used when using a reservation tag No. are shown.

Assignment of general-purpose input/output ports when using reservation tag No.

Connection of external devices when using reservation tag No.

Layout of limit switches in reservation tag No.

LS1: Cylinder rise detection
LS2: Cylinder lower detection
LS2: Hand close detection
LS4: Hand open detection

NOTE Use normal open switches for the limit switches LS1 to LS4.

Reservation tag No. 900 ------Subroutine program that goes to pick up work
Reservation tag No. 901 ------Subroutine program that goes to place work
The details of the reservation tag No. hand subroutine are shown below.

Tag No. 900: Operation to go to pick work

Step No. display	Operation details	Details
*001	$\begin{array}{\|l\|} \hline \text { OUT 0-01 } \\ \cdots \cdots \cdot \cdot 1 \\ \hline \end{array}$	Cylinder lower instruction
*002	$\begin{array}{\|lr\|} \hline \text { IN } & 0-01 \\ \cdots & \cdots \\ \hline \end{array}$	Wait for cylinder lower completion
*003	TIM 0.1	Timer wait
*004	$\begin{array}{\|l\|} \hline \text { OUT 0-01 } \\ \cdots \\ \cdots \end{array}$	Chuck close instruction
*005	$\begin{array}{\|lr\|} \hline \text { IN } & 0-01 \\ \cdots & \text { O-10. } \\ \hline \end{array}$	Wait for chuck close completion
*006	TIM 0.1	Timer wait
*007	$\begin{array}{\|l\|} \hline \text { OUT 0-01 } \\ \cdots \cdots \cdot \cdot \cdot 0 \end{array}$	Cylinder rise instruction
*008	$\begin{array}{\|lr\|} \hline \text { IN } & 0-01 \\ \cdots & 0 \\ \hline \end{array}$	Wait for cylinder rise completion
*009	TIM 0.1	Timer wait
*010	RET	

Tag No. 901: Operation to go to place work

Step No. display	Operation details	Details
*001	OUT 0-01 -••••••1	Cylinder Iower instruction
*002	$\begin{array}{\|lr\|} \hline \text { IN } & 0-01 \\ \cdots & \cdots \\ \hline \end{array}$	Wait for cylinder lower completion
*003	TIM 0.1	Timer wait
*004	$\begin{array}{\|l\|} \hline \text { OUT 0-01 } \\ \cdots \cdots \cdot 10 \cdot \end{array}$	Chuck open instruction
*005	$\begin{array}{\|lr\|} \hline \text { IN } & 0-01 \\ \cdots & 01 \\ \hline \end{array}$	Wait for chuck open completion
*006	TIM 0.1	Timer wait
*007	$\begin{array}{\|l\|l\|} \hline \text { OUT 0-01 } \\ \cdots \cdot . . . \cdot \cdot 0 \end{array}$	Cylinder rise instruction
*008	$\begin{array}{\|lr\|} \hline \text { IN } & 0-01 \\ \cdots & \cdot \\ \hline \end{array}$	Wait for cylinder rise completion
*009	TIM 0.1	Timer wait
*010	RET	

NOTE The details of the reservation tag No. cannot be confirmed on the Teach Pendant.

Programming in easy mode

The method for programming the easy mode is given below.

- Input of point coordinates, speed and hand subroutine tag No.

Select the easy mode with the mode setting, and display the initial screen of the PRGM mode (easy). (Refer to section 6.1.1)

STEP 1 Use the numeric keypad to enter the X, Y coordinates, and then press ENT. (-8000 to 8000 can be input.)
The coordinate data is input in the coordinate table having the same point table No. as the step No.

NOTE Remote teaching and direct teaching is also possible by pressing ($\left.\begin{array}{c}\text { DIRECT } \\ \mathrm{JOG}\end{array}\right)$. (Refer to section 3.2.2)

Use the numeric keypad to enter the speed No., and then press ENT . (0 to 10)
When $\mathrm{V}=0$ is entered, the speed is set to the designated speed preset by SPD command.
STEP 3 Use the numeric keypad to enter the tag No. (hand subroutine), and then press ENT.
(0 to 999)
If a determined operation is to be carried out by using the reservation tag No., use the reservation tag No. 900 and 901.
(Refer to section 6.1.2 (10).)
Press NEXT and move to the next step.

NOTE The hand subroutine program is written into the sequential program. When entering the program, if $\binom{$ SEQUN }{ PALLI } is pressed, the sequential PRGM mode can be changed to. The easy mode PRGM mode will be returned to when $\left.\begin{array}{l}\text { SEQUU } \\ \text { PALET }\end{array}\right)$ is pressed again.

Step No.

STEP 4 Use the numeric keypad and enter the point coordinates, speed No. and tag No. (hand subroutine) in the same manner as STEP 1, STEP 2 and STEP 3.
Press NEXT to move to the next step, and NEXT to return to the previous step.

NOTE The easy mode coordinates are written into the coordinate table having the same point table No. as the step No.

- Setting of branching conditions

Display the step for which a branch condition is to be set on the easy mode screen and press F1 . The branch condition setting screen will display.

[Unconditional branch conditions]

[EASY] 01
001
JMP 000

STEP 1 Use the numeric keypad to enter the step No. to be branched, and then press ENT. When ALT is pressed, STEP 2 will be moved to. When ESC is pressed, the easy mode initial screen will display
[Input condition branching]

[Counter condition branching]

Setting of start subroutine, end subroutine and repetition conditions

When F2 is pressed on the easy mode screen, the following setting and display screen will display.

- End setting

In the easy mode, a setting to indicate the end of the operation at the final step of the series of operations (including cycle operation) must be set regardless of the operation pattern.

For example, with an operation pattern of point A to point B to point C is carried out as shown below, the step point C at the end of the cycle will be the end step.

Operation pattern

STEP 1 Display the end step screen and press \qquad A "*" to indicate the end will display, and the end setting will be completed.
To delete the end setting "*", press again.

NOTE Always set the end when using the easy mode. If the end is not set, a step No. error will occur when the program is executed.

- No. of programs and No. of steps

The No. of programs and No. of steps used in the easy program are shown below.

Program No.	Step No.
1	001 to 100
2	101 to 200
3	201 to 300
4	301 to 400
5	401 to 500
6	501 to 600
7	601 to 700
8	701 to 800

No. of programs.: 8 (No. 1 to No. 8) No. of steps: 100 steps/program

NOTE Do not branch (jump) between program Nos. in the easy mode.

An example of a program in the easy mode is shown below.

[Example]

Pick up the workpiece at point A, check for passing or failing at point B. If general-purpose input port 01-1 turns "ON" at point B, place work at point D (failing part), and if "OFF", place work at point C (passing part). After replacing work at point B and C , return to point A and pick up work. The speed is
 10 , and the No. of repetitions is infinite.

Setting of program at point A
[EASY] 01 $X=0100.00$ 001 $V=10$ TAG: 900

Input items

- Coordinates------------------- Point A coordinates (X=100, Y=100)
- Speed
- Hand tag No. ----------------- Input reservation tag No. 900.

Program setting at point B

Input items

[EASY]01 $\quad \mathrm{X}=0100.00$
$002 \quad V=10 \quad Y=0200.00$
TAG:000

Program setting at point C

Input items

[EASY]01 $\quad X=0200.00$

- Coordinates

Point C coordinates ($\mathrm{X}=200, \mathrm{Y}=200$)
$003 \quad V=10 \quad Y=0200.00$
TAG:901
*

Program setting at point D
Input items
[EASY] $01 \quad X=0300.00$
$004 \mathrm{~V}=10 \mathrm{Y}=0200.00$
TAG:901

- Coordinates-

Point D coordinates ($\mathrm{X}=300, \mathrm{Y}=200$)

- Speed
- Hand tag No. ----------------- Input reservation tag No. 901.
[EASY]01
004
JMP 001
Press F1 at step 004, and select unconditional branching conditions.
- Unconditional branching condition setting

Jump to step 001.

■ 6.1.3 Copy editing of easy mode

A random program in the easy mode can be copied to another easy program. Enter the PRGM mode (sequential) and press HELP . (Refer to section 6.1.1.) The following screen will display.

STEP 5 Use the numeric keypad to enter the copy origin easy program No. and the copy destination easy program No.
Press ENT. The program will be copied, and STEP 4 will be returned to.
Press ESC to return to STEP 4.

■ 6.1.4 Clearing of easy mode programs

All of the easy programs in the controller can be cleared.
Enter the PRGM mode (sequential) and press HELP. (Refer to section 6.1.1.) The following screen will display.

In this state, press F3
Press ESC to return to the initial screen of the PRGM mode.

STEP 5 To clear the program, press ENT. To not clear the program, press ESC.

NOTE The coordinate table Nos. 1 to 800 will be cleared.

- 6.2 RUN mode of easy mode

This ROIbot can be operated with the following methods.

- Continuous operation, single operation of the AUTO mode

- STEP mode

NOTE Operation cannot be restarted after the power is turned OFF in the easy mode.

■ 6.2.1 AUTO mode of easy mode

Before using the easy mode, the easy mode must be validated with the mode setting. Refer to section 6.1.1 on how to make the setting.

(1) Continuous operation

Carry out operation in the STEP mode to verify the program operation before starting operation in the AUTO mode.

- Operation using Teach Pendant

STEP 2 This state is the easy mode RUN mode. Press (SEARCH) and then use the numeric keypad to enter the easy program No. to be executed. Then press ENT to display the corresponding program.

STEP 3 The program execution will start when START is pressed. During execution, the easy mode operation state can be monitored as shown on

If STOP is pressed, the program will stop after completing the step currently being executed.
To restart the program, press START.
NOTE If the EMERGENCY STOP button is pressed, the robot will coast to a stop. The stopping distance will differ according to the load size, speed and inertia.

- Operation with external signals

Use the following procedure to carry out operation with the external signals. Refer to section 17.1 on how to disconnect the Teach Pendant.

The following settings must be made before carrying out operation.
Set the controller mode setting to the easy mode. (Refer to section 13.2.10.)
Set the program selection input bit designation to the general-purpose input. (Refer to section 13.2.5.)

[Operation procedures]

1. Carry out return to origin with the system input return to origin.
2. Designate the easy program No. to be executed with the system input program No. selection.
3. Input the start signal to execute the program.
4. If the stop signal is input during operation, the program will stop after ending the step currently being executed.
5. To restart from the step where the program was stopped, input the start signal.
6. To start from step 001, input the reset signal and then input the start signal. If the restart function is valid, the reset input will be ignored. Refer to section 10.2.6 for details.

(2) Single operation

During single operation, the program will stop once after the axis movement or output related operation is executed. To start or restart the program, input the start signal or press START. Normally this is used to verify a program.

An example of single operation is given below.

1. Turn the single operation input signal $O N$.
2. The following operations are basically the same as continuous operation. (Refer to section 6.2.1 (1) Continuous operation.)
3. When the program has stopped operation, press sTART or input the start signal to sequentially start the program.

- The single operation mode input setting in the mode setting must be set. (Refer to section 13.2.1.)
- Operation with either the Teach Pendant or external signal is possible.
- The single operation input signal must retain the ON state during single operation.

If the single operation input signal is turned OFF during single operation, the remaining program will be continuously operated.

- Even if the single operation input signal is input during continuous operation, it will be ignored, and continuous operation will continue.
- The following commands can be used for stopping after execution.

MOVP, MVB, MVE, HOME, OUT, OUP, OUTC

■ 6.2.2 STEP mode of easy mode

STEP mode is used to execute the program in the controller one step at a time.
Use this mode to confirm the easy program operation, etc., before executing the program in the AUTO mode.

Before using the STEP mode, the easy mode must be validated with the mode setting on the easy mode setting screen. (Refer to section 6.1.1.)

STEP 1 Turn ON the power switch. After the initial screen displays, the following screen will display, so press F1 and HOME to carry out return to origin.

STEP 4 Each time START is pressed, one step of the program will be executed.
The program will be executed sequentially in step units and will stop.

The tag No. of the hand program being executed will display. (000 will display when a program is not being executed.)

The step No. of the sequential program being executed will display.

The No. of repetitions will display.
No. of step (easy program) being executed will display.

■ 6.2.3 Changing of speed during operation (override)

The entire program execution speed can be delayed by using the override function. This allows the program to be confirmed at a low speed.

(Override value: 1 to 100)

NOTE The override setting is valid only while the program is stopped.

Chapter 7 Palletizing mode

The palletizing is a mode exclusive for moving and loading. This program can be executed just by setting the parameters.
The following types of modes are prepared in the palletizing mode.

- Movement from set position to matrix-type point on X and Y axes direction (1 to M mode)
- Movement from matrix-type point in X and Y axes direction to set position (M to 1 mode)
- Movement from matrix-type point in X and Y axes direction to matrix-type point in X and Y axes direction (M to M mode)

Palletizing operation is carried out in the P1 direction and P2 direction order.
The matrix work origin P0 does not always need to be near the origin. The matrix-shape P0 to P2 can be set at a random position, by that allowing the palletizing operation order to be changed. This ROlbot's palletizing mode has the following procedures.

- The program position data can be input with remote teaching or direct teaching.
- By writing in the tag No. of the start program and end program, a sequential program can be executed before and after the palletizing operation.

- 1 to M mode

■ 7.1 Basic flow chart of palletizing mode

- The execution order of this palletizing mode is as follows. After the start signal is input, the start program tag No. is referred to. If the tag No. is "000", the start program is passed, and if it is other than " 000 ", the program jumps to the step of the tag No. written in the sequential program. Then that subroutine is executed.
After ending the palletizing operation, the end program tag No. is referred to, and the subroutine is executed and stopping in the same manner as the start program.

[Start program]

The tag No. of the sequential program to be executed before palletizing operation is indicated.

Tag No. 000 Program is passed.
Tag No. other than " 0 " \cdots The designated tag No. program is executed.

[Hand program]

- The hand program operates the chuck, etc., that is installed.
- Programs are made for both the source side (S side) and destination side (D side).

Tag No. 000 Program is passed.
Tag No. other than "0" \cdots The designated tag No. program is executed.

[End program]

The tag No. of the sequential program to be executed after palletizing operation is indicated.

Tag No. 000
Tag No. other than "0" \cdot
Program is passed.
. The designated tag
No. program is executed.

NOTE

- The above three types of programs are written as subroutines in the appropriate steps of the sequential program.
- The tag No. must always be set at the first step of this subroutine, and "RET" written at the end.
- This subroutine tag No. is written in the palletizing program.

■ 7.2 PRGM mode in palletizing mode

The PRGM (program) screen in the palletizing mode is configured of 14 screens. The screens are common in all modes, but the screens that do not need to be set for the 1 to M mode or M to 1 mode will not display. The positions indicated with an X in the following table are not displayed.

Screen No.	Details	M to M	$\mathbf{1}$ to M	M to 1
01	Start tag No.	\bigcirc	\bigcirc	\bigcirc
02	S side matrix P0 coordinates	\bigcirc	\bigcirc	\bigcirc
03	S side matrix P1 coordinates	\bigcirc	\times	\bigcirc
04	S side matrix P2 coordinates	\bigcirc	\times	\bigcirc
05	No. of S side matrixes	\bigcirc	\times	\bigcirc
06	Movement speed toward S side	\bigcirc	\bigcirc	\bigcirc
07	S side hand program tag No.	\bigcirc	\bigcirc	\bigcirc
08	D side matrix P0 coordinates	\bigcirc	\bigcirc	\bigcirc
09	D side matrix P1 coordinates	\bigcirc	\bigcirc	\times
10	D side matrix P2 coordinates	\bigcirc	\bigcirc	\times
11	No. of D side matrixes	\bigcirc	\bigcirc	\times
12	Movement speed toward D side	\bigcirc	\bigcirc	\bigcirc
13	S side hand program tag No.	\bigcirc	\bigcirc	\bigcirc
14	End tag No.	\bigcirc	\bigcirc	\bigcirc

NOTE - Inclined compensation is possible by setting each coordinate data P0 to P2. The matrix (pallet, etc.) does not need to be parallel to each axis, but each point coordinate of the matrix must not exceed the soft limit value.

- The operation pattern can be changed on the same matrix by changing the coordinate data P0, P1 and P2 settings.

Operation example: 1 to \mathbf{M}

The place of 2-axis combination is shown below for example.

Set the coordinates (1) in the D side P0 coordinates
Set the coordinates (3) in the D side P1 coordinates
Set the coordinates (4) in the D side P2 coordinates

[Operation pattern]
To execute the 1 to M program.

$$
\begin{aligned}
\text { (A) } & \rightarrow(1) \rightarrow \text { (A) } \rightarrow \text { (2) } \rightarrow \text { ® } \rightarrow \text { (3) } \\
& \rightarrow \text { (A) } \rightarrow \text { (4) } \rightarrow \text { (A) } \rightarrow \text { (5) } \rightarrow \text { (A) } \rightarrow \text { (6) }
\end{aligned}
$$

Set the coordinates (4) in the D side P0 coordinates
Set the coordinates (6) in the D side P1 coordinates
Set the coordinates (1) in the D side P2 coordinates

[Operation pattern]
To execute the 1 to M program.

$$
\begin{aligned}
\text { (A) } & \rightarrow \text { (4) } \rightarrow \text { (A) } \rightarrow \text { (5) } \rightarrow \text { (A) } \rightarrow \text { (C) } \\
& \rightarrow \text { (A) } \rightarrow \text { (1) } \rightarrow \text { (A) } \rightarrow(2) \rightarrow \text { (A) } \rightarrow \text { (3) }
\end{aligned}
$$

- In the palletizing program, counter Nos. 91 to 94 are used as the palletizing counter.

		Applicable counter
S side	Count in P0 to P1 direction	No. 91
	Count in P0 to P2 direction	No. 92
D side	Count in P0 to P1 direction	No. 93
	Count in P0 to P2 direction	No. 94

NOTE Counter Nos. 91 to 94 are counters exclusive for palletizing. Do not use these in programs other than the palletizing program.

- Refer to the relation of the counter details and movement position given in Section 4.1.7 (3) for details on the counter and movement position.
- The counter details are automatically processed (counted up, initialized) after the destination side hand program is executed.
- The S side and D side coordinate data P0 to P2 can be remotely taught or directly taught. However, direct teaching cannot be used for axes provided with brakes. (Refer to section 3.2.2.)
- If the No. of S sides and D sides differs in the M to M mode, the palletizing operation will be continuously repeated. (If the D side pallet is full, the first point of the D side pallet will be returned to.)
This operation will be repeated until the work at the final point of the S side reaches the final point on the D side.

[Example]

In the above example, after 36 works (min. nominal multiple of 12 and 9) are palletized, the program will end.
(The palletizing operation is repeated three times on the S side pallet and four times on the D side pallet.)

■ 7.2.1 How to enter and leave the PRGM mode

The PRGM mode is used for programming. The method for entering and leaving the PRGM mode in the palletizing mode will be described in this section.

STEP 1 Turn the power ON. When the display shown at the left appears after the initial screen press F1. Then press $\begin{gathered}\text { RUN } \\ \text { PRGM }\end{gathered}$ to enter the PRGM mode.

STEP 2 Press $\left.\begin{array}{c}\text { sEaUN } \\ \text { PALET }\end{array}\right)$ and enter the palletizing mode.

0001
NOP

Palletizing

STEP 3 The initial screen of the palletizing mode will display.
Press NEXT to display the next screen.
Press $\left.\begin{array}{c}\text { SEOUV } \\ \text { PALET }\end{array}\right)$ to leave the palletizing mode and return to the sequential mode.

■ 7.2.2 Editing palletizing mode program

The programming screen using the M to M mode is shown below.
Enter the PRGM (program) mode and press $\left.\begin{array}{c}\text { SEQUU } \\ \text { PALLE }\end{array}\right)$ (Refer to section 7.2.1.)

STEP 1 When ALT is pressed, the mode will alternate, so select the required mode and press ENT. Next, use the numeric keypad to enter the tag No. and press ENT. Press NEXT to display the next screen.

STEP 2 Use the numeric keypad to enter the S side P0 coordinates (absolute coordinates) and press (ENT. Press NEXT to display the next screen and -NEXT to display the previous screen.

STEP 4 Use the numeric keypad to enter the S side P2 coordinates (absolute coordinates) and press ENT. Press NEXT to display the next screen and -NEXT to display the previous screen.
? If the S side matrix is one row, set " 0 " for the X, Y coordinates.

STEP 6 Use the numeric keypad to enter the No. of the
[PRGM]06 SO APPROACH 01 M-M S V=00 POST

STEP 7 Use the numeric keypad to enter the tag No. of the hand program on the S side and then press ENT. Press NEXT to display the next screen and -NEXT to display the previous screen.

Use the numeric keypad to enter the D side P0 coordinates (absolute coordinates) and press ENT. Press NEXT to display the next screen and -NEXT to display the previous screen.

$?$ If the D side matrix is one row, set " 0 " for the X, Y coordinates.

Use the numeric keypad to enter the No. of pieces on the D side and press ENT. Press NEXT to display the next screen and -NEXT to display the previous screen.
? If the D side matrix is one row, set " 0 " for P2.

STEP 12 Use the numeric keypad to enter the No. of the speed to be applied when moving toward the D side and then press ENT. Press NEXT to display the next screen and -NEXT to display the previous screen.

Use the numeric keypad to enter the tag No. of the hand program on the D side and then press ENT. Press NEXT to display the next screen and -NEXT to display the previous screen.

Use the numeric keypad to enter the tag No. and then press ENT.
Press -NEXT to display the previous screen.

NOTE If (SEARCH) is pressed during STEP 1 to 14 , the program No. can be searched (1 to 8), and when pressed twice the screen No. can be searched (1 to 14). (Refer to sections 15.5 and 15.6.)
If ESC is pressed after searching, the original screen will display.

■ 7.2.3 Copy editing of palletizing mode

A random program in the palletizing mode can be copied to another palletizing program.
Enter the PRGM mode (sequential mode) and press HELP.
The following screen will display. (Refer to section 4.1.1.)

In this state, press F4.
Press ESC to return to the initial screen of the PRGM mode.

STEP 4 Use the numeric keypad to enter the copy origin palletizing program No. and the copy destination palletizing program No.
Press ENT. The program will be copied, and STEP 3 will be returned to.
Press ESC to return to step 3.

■ 7.2.4 Clearing of palletizing mode programs

Enter the PRGM mode (sequential) and press HELP. (Refer to section 4.1.1.) The following screen will display.

STEP 2 In this state, press F3 to enter the clear
 mode.
Press ESC to return to the initial screen of the PRGM mode.
[To clear only palletizing program]

[To clear palletizing and sequential programs]

Press F3 is pressed, both the sequential and palletizing programs will be initialized. Press ESC to return to the previous screen.

STEP 4B To clear the program, press ENT. To not
 clear the program, press ESC.

■ 7.2.5 How to restart operation after turning power OFF in palletizing mode

During palletizing with this ROlbot, work can be restarted with the following conditions even if the power is turned OFF while the program execution is stopped.

Set the restart input bit in the mode setting. (Refer to section 13.2.2.)
Using the status setting (input ON) step No. and counter items when the mode setting restart is validated at the initial settings.
(Refer to section 13.2.12.)
After turning the power OFF, turn the restart input ON, and turn the power ON. After returning to the origin, the program will be restarted with the following conditions.
Note that the status setting (input ON) step No. and counter items when the mode setting restart is validated must be used at the initial settings.

Palletizing flow chart

Position where power is turned OFF	Restart method
At processes 1 to 2	Starts from process 1 (from beginning)
At processes 3 to 6	Starts from process 3 (continuing of operation)
At process 7	Starts from process 1 (It is interpreted that the process has been completed, so operation will start from process 1.)

NOTE

- If the operation is stopped between processes 3 and 6 , the axis will stop at the S side or D side. However, if it is stopped at the D side (process 5 or 6), start again after returning one work to the S side pallet.
When stopped at the S side (process 3 or 4), confirm that the work is at the S side pallet, and then start.
- Resuming of operation is possible only when the power is turned OFF while the program execution is stopped (stopped in normal state). If the power is turned OFF during execution of a program (during operation), restarting will not be possible. A restarting not possible error will occur.

■ 7.3 RUN mode of palletizing mode

This ROIbot can be operated with the following methods.

- AUTO mode - - Continuous operation
- STEP mode

■ 7.3.1 AUTO mode of palletizing mode

(1) Continuous operation

Continuous operation will automatically execute the program in sequence. When running the program for the first time after creating it, verify the operation of the program using the STEP mode before starting continuous operation. (Refer to section 7.3.2.)

Operation using Teach Pendant

The operation procedures using the Teach Pendant are shown below.

STEP 3 Press SEARCH and then use the numeric keypad to enter the program No. to be executed. Then press ENT to display the corresponding program.

- The No. of pieces being executed will display.
- The set No. of pieces will display.

STEP 4 The program execution will start when START is pressed.

- The step No. (sequential program) being executed will display. (0000 will display if no program is being executed.)

The tag No. of the hand program being executed will display. (000 will display if no program is being executed.)

- The execution program mode (M-1, 1-M, M-M) will display.
- The program No. will display. (1 to 8)

Display of execution state.
This will change according to the process.

STEP 5 When the end program execution has completed, the display will change from END to START, and the initial state will be returned to.

Operation with external signals

Use the following procedure to carry out operation with the external signals.
The Teach Pendant must be disconnected from the controller or turned OFF to carry out operation with external signals. (Refer to section 17.1.)

1. Turn the palletizing input signal ON .

The palletizing input signal must be set with the mode setting. (Refer to section 13.2.16.)
2. Turn the controller power ON .
3. If READY output is set with the mode setting, check the ON state and then input the input signal. (Refer to section 13.2.15.)
If the READY signal is not set with the mode setting, the next input signal will be input approximately two seconds after the power is turned ON.
4. Turn the return to origin signal ON and return to the home.

The return to home input signal must be set with the mode setting. (Refer to section 13.2.6.)
5. Confirm that the return to origin signal is ON and then input the next signal.
6. Turn the start signal ON and start the program.

The palletizing input signal state will be checked when the start signal is input. If the signal is ON, the palletizing mode program will be started.

NOTE The palletizing mode can be entered only from the sequential mode. Thus, the mode setting must be set to "Invalid" as shown in section 11.2.10. If a state other than "Invalid" is selected, the palletizing input signal will be ignored.
? operation currently being executed.

- To restart the program after stopping with a stop signal or STOP command, input the start signal again. To start the program from the start again, input the reset signal and then input the start signal.
Note that the restart mode setting and restart signal input state are related. (Refer to sections 13.2.2, 13.2.12 and 13.2.13.)
- Refer to section 7.2.5 for how to restart operation after turning the power OFF.

(2) Single operation

During single operation, the program will stop once after the axis movement or output related operation is executed. To start or restart the program, input the start signal or press START.
Normally this is used to verify a program.
An example of single operation is given below.

1. Turn the single operation input signal $O N$.
2. The following operations are basically the same as continuous operation. (Refer to section 7.3.1 (1) Continuous operation.)
3. When the program has stopped operation, press sTART or input the start signal to sequentially start the program.

- The single operation mode input bit setting in the mode setting must be set. (Refer to section 13.2.1.)
- Operation with either the Teach Pendant or external signal is possible.
- The single operation input signal must retain the ON state during single operation.

If the single operation input signal is turned OFF during single operation, the remaining program will be continuously operated.

- Even if the single operation input signal is input during continuous operation, it will be ignored, and continuous operation will continue.
- The palletizing input signal must be ON when the start signal is input.
- The following commands can be used for stopping after execution.

MOVP, MVB, MVE, HOME, OUT, OUTP, OUTC

■ 7.3.2 STEP mode of palletizing mode

The STEP mode is used to execute the program in the controller one step at a time using the teach pendant.
After creating a program, use this mode to verify the program, etc., before executing the program in the AUTO mode.

The operation procedures of the step mode are given below.
 screen displays, the following screen will display, so press F1 and HOME to carry out return to origin.

STEP 2 This is the sequential mode's RUN mode.

[AUT0]

0001
NOP Press HELP.

STEP 3 When this screen displays, press F1. The

[RUN]	F1:AUTO/STEP	
	STEP mode will be entered.	

HELP F2:OVERRIDE F3: RESET F4:PAGE

Press the $\binom{$ SEQUV }{ PALET }

STEP 4 Press SEARCH and then use the numeric keypad to enter the program No. to be executed. Then press ENT to display the corresponding program.

STEP 5 Press START to start the program.

```
[STEP] P1=0001 (0003)
01 P2=0001 (0003)
M-M
    START 000 0000
```

STEP 6 The next step will display, and the robot will stop.
Press start to execute the next step. The program will be executed sequentially in step units and will stop.

NOTE During the operation with the STEP mode, the input signal and output signal timings will differ compared to operation in the AUTO mode.

■ 7.3.3 Changing of speed during operation (override)

The entire program execution speed can be delayed by using the override function. This allows the program to be confirmed at a low speed.

STEP 2 Use the numeric keypad to enter the override value. When ENT is pressed the speed will change to the set speed.
Press ESC to return to the RUN mode.
(Initial value: 100)
(Override value: 1 to 100)
NOTE The override setting is valid only while the program is stopped.

This page is blank.

Chapter 8 External Point Designation Mode

- 8.1 Explanation of external point designation mode

The external point designation mode does not use the controller's command language and instead, the positioning movement takes place according to the signals input from the input/output connector. The signals input from the input/output connector are as follow.

	When expansion input/output is not used	When expansion input/output is used *2
Point table	Max. 4 bits 16 points *1	10 bits 999 points
Speed table	1 table (Fixed to table No. 1)	2 bits 3 tables (Table Nos. 1 to 3)
Acceleration/deceleration table	1 table (Fixed to table No. 5)	1 bits 2 tables (Table Nos. 1, 2)
Coordinate system	Fixed absolute coordinates	1 bit Absolute coordinates/ relative coordinates

*1 When the pause input is used, this will be 8 points (3 bits).
*2 Connect the option expansion input/output and validate the expansion input/output in the mode setting. (Refer to section 13.2.17.)

- Setting of external point designation mode

The procedure for making settings to operate with this mode, and the relation of the input ports is shown below.

Table 1. Input ports when using expansion input/output

	Function
Port 01-1	Speed table designation 2^{0} input
Port 01-2	Speed table designation 2^{1} input
Port 01-3	Acceleration/deceleration table designation input
Port 01-4	Coordinate system designation input
Port 02-1	Point table designation 2^{0} input
Port 02-2	Point table designation 2^{1} input
\cdot	\cdot
\cdot	\cdot
\cdot	\cdot
Port 02-8	Point table designation 2^{7} input
Port 03-1	Point table designation 2^{8} input
Port 03-2	Point table designation 2^{9} input

Table 2. Input ports when using expansion input/output

	When not using pause input (No. of point tables: 16)	When using pause input (No. of point tables: 8)
Port 01-1	Point table designation 2^{0} input	Pause input
Port 01-2	Point table designation 2^{1} input	Point table designation 2^{0} input
Port 01-3	Point table designation 2^{2} input	Point table designation 2^{1} input
Port 01-4	Point table designation 2^{3} input	Point table designation 2^{2} input

NOTE An extension input/output unit should be connected to the master unit in the case of using this input/output unit.
If connecting to the salve unit, this input/output unit does not operate.

(1) Point (coordinate) table designation method

- When not using the expansion input/output, a maximum of 4 bits (16 points) can be designated.
- When using the expansion input/output, 10 bits (999 points) can be designated.

Refer to section 13.5.1 for details on how to set the point (coordinate) table.

- If 1000 or more point tables are designated, an error will occur.
- The relation of the point table No. and input port is as follows.

When the input port values are arranged in the order of $2^{9}, 2^{8}, \ldots .2^{1}, 2^{0}$ and interpreted as binaries, the number achieved by adding 1 to that value is the table No.
<Example> For table No. 16

$$
\begin{aligned}
16 & =\left(2^{9} \times 0+2^{8} \times 0+2^{7} \times 0+2^{6} \times 0+2^{5} \times 0+2^{4} \times 0+2^{3} \times 1+2^{2} \times 1+2^{1} \times 1+2^{0} \times 1\right)+ \\
1 & =(8+4+2+1)+1
\end{aligned}
$$

(2) Speed table designation method

- When not using the expansion input/output, the speed table is fixed to No. 1.
- When using the expansion input/output, 12 bits (3 steps) can be designated.

	Speed table designation input		
	2^{1}	2^{0}	
Designated speed table No.	1	0	0
	1	0	1
	2	1	0
	3	1	1
$1:$ ON $0:$ OFF			

Refer to section 13.5.2 for the method of setting the speed table.

- The relation of the speed table No. and input port is the same as for the point table designation.

(3) Acceleration/deceleration table designation method

- When not using the expansion input/output, the acceleration/deceleration table is fixed to No. 5.
- When using the expansion input/output, 1 bit (2 steps) can be designated.

		Acceleration/ deceleration table designation input
Designated acceleration/deceleratio n table No.	1	0
	2	1

Refer to section 13.5.3 for the method of setting the acceleration/deceleration table.
(4) Coordinate system designation

- When not using the expansion input/output, the system is fixed to the absolute coordinates.
- When using the expansion input/output, 1 bit (relative coordinates/absolute coordinates) can be designated.

		Coordinate system designation input
Designated coordinate system	Absolute coordinates	0
	Relative coordinates	1

■ 8.2 Operation method of external point designation mode

In the external point designation mode, operation can be carried out with system inputs and general-purpose inputs or with the Teach Pendant.

■ 8.2.1 Execution with input/output

An example of the settings and operation procedures in the external point designation mode is shown below.

(Refer to section 13.5)
(Refer to section 13.2.4, 13.2.5, 13.2.10 and 13.2.17.)
(Note) The input interval of the signal is 30 ms or more.

NOTE The start input must be turned ON 30 ms or longer after the input signal is designated.

■ 8.2.2 Operation with Teach Pendant

In this mode, each point can be moved to using the Teach Pendant. When the Teach Pendant is turned ON in the external point designation mode, the following screen will display.

Display the coordinate table to be moved using NEXT , NEXT ,or SEARCH. Press start.

NOTE The following restrictions will apply when executing operation with the Teach Pendant.
Speed designation:
Fixed to table No. 1
Acceleration/deceleration designation:Fixed to table No. 5
Coordinate system designation: Fixed to absolute coordinates

Other operations

The following operations can be done in the external point designation mode.

- Parameter setting
- Override setting
- RESET operations

8.3 Changing of speed during operation (Override)

The entire execution speed can be delayed by using the override function. This allows the robot operation to be confirmed at a low speed.

Use the numeric keypad to enter the override value. When ENT is pressed, the speed will change to the set speed.
Press ESC to return to the RUN mode.
(Initial value: 100)
(Override value: 1 to 100)

NOTE The override setting is valid only while the program is stopped.

Chapter 9 Pulse train input mode

-9.1 System

■ 9.1.1 System configuration method

When operating with the pulse train input mode, the master unit controls the movement amount and speed according to the pulse train input supplied from an external source. Thus, operations such as return to origin, acceleration/deceleration control and protection with soft limit are carried out by the externally provided controller.

- 9.1.2 Specifications of pulse train input mode

Applicable robot	ROlbot BA II series	
Parameter memory	FRAM (Various parameters required for operation are saved)	
Command input method	2-clock method, 1-clock method	
Command pulse frequency		Max. 500kHz (NOTE1)
Input	Signal	Servo ON, Reset, Counter clear
	Specifications	24VDC 10mA
Output	Signal	Positioning complete, Error, Origin limit, Motor index signal
	Specifications	24VDC 20mA (Max.)
Applicable encoder		Line driver output (Low-wiring type)
Display		
Error display		Error display lamp lighting (Front panel)
Protective functions		Encoder error, Overload, Overvoltage, etc.

NOTE The command pulse frequency 500 kHz is the value for the line driver interface. When an open collector interface is used, the pulse wave form may flatten due to the effect of the floating capacity in the wiring. Thus, when using at 200 kHz or higher, use of a line driver interface is recommended.

■ 9.2 Input/output signals

9.2.1 Input/output connector signal names and pin numbers

When the pulse train input mode is designated in the mode selection, the input/output connector will be changed to the following functions.

No.	Signal name	No.	Signal name
1	+COM1	19	COM3
2	General-purpose output port 1-1*	20	General-purpose input port 1-1
3	General-purpose output port 1-2*	21	General-purpose input port 1-2
4	General-purpose output port 1-3*	22	General-purpose input port 1-3
5	General-purpose output port 1-4*	23	General-purpose input port 1-4
6	-COM1	24	N.C
7	Emergency stop output (NO)	25	Emergency stop input
8	Emergency stop output (COM)	26	Emergency stop input
9	Emergency stop output (NC)	27	COM4
10	N.C	28	System input
11	System output	29	Servo ON input
12	Error output	30	Counter clear input
13	Positioning complete output	31	Reset input
14	System output *	32	N.C
15	Origin LS output	33	+CLK/ \pm CLK (P)
16	ø Z	34	$\uparrow \quad(\mathrm{N})$
17	-COM2	35	-CLK/SIGN (P)
18	N.C	36	$\uparrow \quad(\mathrm{N})$

N.C: No Connection

NOTE The pins marked with a * will not function. Do not connect the external circuit.
Use the enclosed connector.

9.2.2 Functions of each input/output signal

(1) Error output

This turns ON when an error occurs in the controller.
Refer to Chapter 19 for the error types and process methods.

(2) Positioning complete output

This turns ON when the deflection of the cumulative value of the command pulse (pulses from external controller) and cumulative value of the feed-back pulses (pulses of motor encoder in axis) is smaller than the in-position value set with the parameters.
Note that this will turn OFF regardless of the cumulative value deflection during the servo free state.
(3) Origin LS output

This outputs the information on the origin limit switch in the axis.
(4) ϕ Z (Encoder Z-phase pulse)

This outputs one signal per motor rotation output from the motor encoder in the axis.

Output signal circuit

(5) Counter clear input

This clears the software counter in the controller accumulating the command pulses and the deflection counter that shows the difference of the command pulses and feedback pulses.

ON: Clear
OFF: Normal
(6) Servo ON input

This controls the exciting and non-exciting state of the servomotor in the axis.
Servo ON: Servo locked state.
Servo OFF: Servo free state.
NOTE - Turn the power ON when the servo ON signal is in the OFF state. When recovering from an error or emergency stop state, turn the servo ON signal OFF once.
If the power is turned ON while the servo ON signal is ON, or when recovering from an error or emergency stop state, the servo will not lock.

- The servo free state caused by the servo ON input differs from the servo free state caused by a hardware state such as emergency stop. This is the servo free state caused by the software.

(7) Reset input

This resets an error that has occurred in the controller.
ON: Error reset
OFF: Normal

(8) + CLK/ \pm CLK(P) (N), -CLK/SIGN(P) (N)

The 2-clock method or 1-clock method can be selected for the command pulse input method using the Teach Pendant.

	2-clock method	1-clock method
+ CLK/ CLK	+ clock input	Clock input
-CLK/SIGN	- clock input	Sign input

Input signal circuit

(P) and (N) each indicate the positive logic or negative logigic input.
NOTE Do not turn the servo ON signal OFF to ON when the CLK signal is input.

With this method, the movement direction and movement amount are designated with the + clock and - clock, and operation is carried out.

Pin No.	Signal name		Signal waveform	Movement direction		
33, 34	+CLK	ON OFF		$\Theta \quad \rightleftarrows \oplus$		
35, 36	-CLK	ON OFF		\|l	Motor side	
33, 34	+CLK	ON OFF	-	$\Theta \longleftarrow{ }^{\oplus}$		
35, 36	-CLK	ON OFF				

1-clock method

With this method, operation takes place with the clock (\pm CLK) that designates the movement amount (does not include the movement direction element) and the SIGN signal that indicates the movement direction.

NOTE Provide a time interval of $1 \mu \mathrm{~s}$ or more from when the SIGN input is designated to when \pm CLK is input.

Pin No.	Signal name	Signal waveform	Movement direction
33, 34	\pm CLK	$\begin{array}{ll} \mathrm{ON} & \square \square \square \\ \mathrm{OFF} & \square \end{array}$	$\Theta \rightleftarrows \oplus$
35, 36	SIGN	ON \qquad	side
33, 34	\pm CLK		
35, 36	SIGN	ON OFF	

NOTE - The wave form in the above diagram is the wave form shown with \star in the line driver interface and open collector interface diagrams in section 9.2.3.

- The movement direction indicates the direction when the direction of motor revolution is set as described in the BA Instruction Manual (Axis Installation Section).

Timing of each signal

- Power ON sequence

- Recovery sequence from error or emergency stop

- Command clock wave form

- 9.2.3 Example of input/output signal connection

Master unit

NOTE Both line driver interface and open collector interface can be handled with the pulse train input. However, use with the line driver interface is recommended to improve the reliability against noise, etc.

- Line driver interface

- Open collector interface

NOTE When the external power voltage is 24 VDC , the external resistance R will be approx. $2 \mathrm{k} \Omega$.

- 9.3 Operation methods

9.3.1 Designation of pulse train input mode

To run the master unit with this mode, the pulse train input mode must be set in the PARA mode settings using the Teach Pendant. Refer to section 13.2.10 for details on the settings.
There is a 1 -clock method and 2-clock method for the pulse train input operation, and the current pulse input method can be confirmed with the following screen displayed when the Teach Pendant is turned ON.

This screen displays only when the pulse train input mode is designated.

- 9.3.2 Matters to be set for pulse train input mode

The parameters that can be set when using the pulse train input mode for operation are shown below. When operating as a robot, the optimum values are set by the robot type designation. However, these can be changed individually.

In-position data value [mm]
Overflow data value [pulse]
Direction of revolution
Encoder division value: 2000 [pulse] (Cannot be changed)
Encoder multiplier value: 1, 2, 4 multiplication
Lead:
5, 10, 20 [mm]
Conversion of mm unit and No. of pulses
No. of pulses required for $1[\mathrm{~mm}]$ movement $=$
$\frac{1[\mathrm{~mm}]}{\text { Lead }[\mathrm{mm}]}$
$\frac{\text { No. of encoder divisions } \times \text { encoder multiplier value }}{}$
Lead $[\mathrm{mm}]$

Frequency for 1 [mm/s] movement command =
No. of encoder divisions \times encoder multiplier value Lead [mm]

- Method of setting various parameters

The basic Teach Pendant operation method does not change from sequential operation, but the normally displayed screen will be exclusive for pulse inputs.

STEP 1 When the power of the controller set with the pulse train input mode is turned ON, the following screen will display after the initial screen. Press F1 and $\begin{aligned} & \text { RUN } \\ & \text { PRGM }\end{aligned}$ to enter the program mode. The robot type will be set when F2 is pressed.

STEP 2 Press HELP to display the STEP3 screen. If RUN
PRGM is pressed, the program mode will be quit, and the AUTO mode for carrying output operation will be entered.

The display will be 2CLOCK during the 2-clock mode.

STEP 3 Press F4 to enter the parameter mode. Press ESC to return to STEP 2. HELP F2:

F3: EDIT
F4:PARAMETER

Refer to Chapter 13 for details on how to edit the parameters.
Refer to section 2.4.7 for details on entering the robot type.

- 9.3.3 Protective functions

The following protective functions are available in the pulse train input mode. Refer to Chapter 19 for the displays on the Teach Pendant, causes and measures.

- Overvoltage error
- WDT error
- Emergency stop
- Overcurrent error
- Overload error
- Overflow
- Overspeed error
- Encoder error
- Other driver errors
- ID error
- Parameter memory error

■ 9.4 Precautions for operation

This ROlbot does not have a limit switch for preventing overrun. Collision to the end block by overrunning could damage the axis. Do not collide into the end block.

Operate the unit so that the motor's frame temperature (ambient temperature $\left[{ }^{\circ} \mathrm{C}\right]+$ external cover temperature rise value $[\mathrm{K}]$) is $100^{\circ} \mathrm{C}$ or less. The insulation class of the motor being used is Class F (JISD4004).

Operate the unit so that the encoder's outer cover temperature (ambient temperature $\left[{ }^{\circ} \mathrm{C}\right]+$ external cover temperature rise value $[\mathrm{K}]$) is $80^{\circ} \mathrm{C}$ or less.

Refer to section 2.4.1 for details on installing the controller.
The maximum input frequency of the command pulses must be $3000 \mathrm{~min}^{-1}$ with the motor output shaft conversion. An overspeed error will occur when the controller is the motor speed $5000 \mathrm{~min}^{-1}$ or more.

9.5 Operation procedures

(1) Initial settings

Confirm that the emergency stop circuit, controller cable, power cable, signal cable and Teach Pendant are securely connected and then turn the power ON.

NOTE When the controller is delivered, the pulse train input mode is set to "OFF" (Invalid), so the servo lock state will be entered as a normal robot.

1. Confirm that the status display LED on the front of the controller is lit up in green.
2. Turn the Teach Pendant ON, and designate the axis robot type and pulse train input mode. (Refer to sections 2.4.7 and 9.3.1.)
(2) Turn the servo ON signal OFF, turn the counter clear signal ON, and turn the power ON again.
3. Confirm that the status display LED on the front of the controller is lit up in green.
4. Turn the servo $O N$ signal $O N$. The servo lock state will be entered.
(3) Input the command pulse with the input method set in the pulse train input mode.
5. Adjust the gain if necessary.

Refer to section 2.4.9 on how to adjust the gain.
NOTE The data set in (1)-2 and (3)-1 is self-held. It does not need to be input again when the power is turned ON the next time.

Chapter 10 Connection with External Devices

■ 10.1 Input/output signal

The input/output connector is configured of the system input/output and general-purpose input/output. The system input/output is basically connected to the programmable controller, etc., and is used to control the robot from an external source. The general-purpose input/output is connected to the hand sensor or proximity sensor, etc., and is mainly used to control the external peripheral devices.

■ 10.1.1 Master unit input/output connector signal names and pin numbers

No.	Signal name		No.	Signal name	
1	+COM1	(Note 2)	19	COM3	(Note 2)
2	General-purpose output port 1-1		20	General-purpose input port 1-1	
3	General-purpose output port 1-2		21	General-purpose input port 1-2	
4	General-purpose output port 1-3		22	General-purpose input port 1-3	
5	General-purpose output port 1-4		23	General-purpose input port 1-4	
6	-COM1 (Note 2)		24	N.C	
7	Emergency stop output (NO)		25	Emergency stop input	
8	Emergency stop output (COM)		26	Emergency stop input	
9	Emergency stop output (NC)		27	COM4 (Note 2)	
10	N.C		28	Return to origin	
11	Running	(Note 1)	29	Start	Servo ON(Note 1)
12	Error	Error (Note 1)	30	Stop	$\begin{gathered} \text { Counter clear } \\ \text { (Note 1) } \\ \hline \end{gathered}$
13	Positioning complete	$\begin{aligned} & \text { Positioning } \\ & \text { complete (Note 1) } \end{aligned}$	31	Reset	Reset (Note 1)
14	Return to origin complete		32	N.C	
15	Origin LS output		33	+CLK/ \pm CLK (P)	(P) (Note 1)
16	¢Z		34		(N) (Note 1)
17	-COM2		35	$-\mathrm{CLK} / \pm$ SIGN (P)	(P) (Note 1)
18	N.C		36	\uparrow	(N) (Note 1)

NOTE

(Note 1) These are the signal names for the pulse train mode, and will not function in other modes.
To prevent malfunctioning, do not connect pin Nos. 33 to 36 when not using them in the pulse train input mode.
(Note 2) +COM1, COM3 and COM4, and -COM1 and -COM2 are not connected internally.

Use the enclosed connector.

- Cable side connector type

Plug 10136-3000VE (Sumitomo 3M)
Shell kit 10336-52F0-008 (Sumitomo 3M)

- Panel side connector type

Receptacle 10236-52A2JL (Sumitomo 3M)
Applicable wire size: AWG24 $\left(0.22 \mathrm{~mm}^{2}\right)$
10.1.2 Slave unit input/output connector signal names and pin numbers

No.	Signal name	No.	Signal name
1	+COM1 (Note 1)	19	COM3 (Note 1)
2	General-purpose output port 1-1 (Note 3)	20	General-purpose input port 1-1
3	General-purpose output port 1-2 (Note 3)	21	General-purpose input port 1-2
4	General-purpose output port 1-3 (Note 3)	22	General-purpose input port 1-3
5	General-purpose output port 1-4 (Note 3)	23	General-purpose input port 1-4
6	-COM1 (Note 2)	24	N.C
7	Emergency stop output (NO)	25	N.C
8	Emergency stop output (COM)	26	N.C
9	Emergency stop output (NC)	27	COM4 (Note 1)
10	N.C	28	General-purpose input port 1-5
11	General-purpose output port 1-5 (Note 3)	29	General-purpose input port 1-6
12	General-purpose output port 1-6 (Note 3)	30	General-purpose input port 1-7
13	General-purpose output port 1-7 (Note 3)	31	General-purpose input port 1-8
14	General-purpose output port 1-8 (Note 3)	32	N.C
15	N.C	33	N.C
16	N.C	34	N.C
17	-COM2 (Note 2)	35	N.C
18	N.C	36	N.C

NOTE

(Note 1) +COM1, COM3 and COM4 are not connected internally.
(Note 2) -COM1 and -COM2 are not connected internally.
(Note 3) The rated current of general-purpose outputs $1-1$ to $1-8$ is 300 mA or less/point (open collector output)

Use the enclosed connector.

- Cable side connector type

Plug 10136-3000VE (Sumitomo 3M)
Shell kit 10336-52F0-008 (Sumitomo 3M)

- Panel side connector type

Receptacle 10236-52A2JL (Sumitomo 3M)
Applicable wire size: AWG24 (0.22 mm ${ }^{2}$)

(1) Emergency stop input/output (Only master unit input/out connector)

Before using the ROlbot, always connect the emergency stop circuit to the enclosed input/output connector. If this circuit is not connected, the controller will enter the emergency stop state.

- Emergency stop input
\triangle CAUTION If this signal is input (the circuit is shut off), the general-purpose output state during emergency stop will differ according to the mode setting, but with the default setting, the general-purpose output will be maintained. The robot will enter the emergency stop state, but the stopping distance will differ according to the load size, speed and inertia, etc.

- Emergency stop output

An output terminal is provided to notify the external source that the controller has entered the emergency stop state when the ROlbot enters the emergency stop state. This is used to make a display to an external source or to activate an interlock with other devices, etc.

Output type: Relay contact output (OMRON G6E-134P or equivalent)

	N.O	N.C
During emergency stop	Closed	Opened
Normal state	Opened	Closed

Controller side
(Master unit)

NOTE Use the emergency stop output within a voltage range of 5 to 30 V and current range of 10 mA to 300 mA .
(2) General-purpose input/output
master unit

No.	Signal name	No.	Signal name
1	+COM1 (common for output signal)	19	COM3 (common for input signal)
2	General-purpose output port 1-1	20	General-purpose input port 1-1
3	General-purpose output port 1-2	21	General-purpose input port 1-2
4	General-purpose output port 1-3	22	General-purpose input port 1-3
5	General-purpose output port 1-4	23	General-purpose input port 1-4
6	-COM1		

General-purpose output circuit General-purpose input circuit

Inside controller

1) Input signal: 10 mA
2) Output signal:The Rated current is 300 mA or less/point (open collector output)
3) This ROIbot does not have an input/output power output (24VDC). Supply it from an external source.
4) The general-purpose input/output can be used for various system input/output signals by setting the mode. (Refer to section 13.2)

Slave unit

No.	Signal name	No.	Signal name
1	+COM1 (common for output signal)	19	COM3 (common for input signal)
2	General-purpose output port 1-1	20	General-purpose input port 1-1
3	General-purpose output port 1-2	21	General-purpose input port 1-2
4	General-purpose output port 1-3	22	General-purpose input port 1-3
5	General-purpose output port 1-4	23	General-purpose input port 1-4
6	-COM1	27	COM4 (common for input signal)
11	General-purpose output port 1-5	28	General-purpose input port 1-5
12	General-purpose output port 1-6	29	General-purpose input port 1-6
13	General-purpose output port 1-7	30	General-purpose input port 1-7
14	General-purpose output port 1-8	31	General-purpose input port 1-8
17	-COM2		

General-purpose output
circuit in controller

General-purpose input circuit in collector

1) Input signal: 10 mA
2) Output signal: The rated current is 300 mA or less/point (open collector output).
3) This ROlbot does not have an input/output power output (24VDC). Supply it from an external source.
4) The general-purpose input/output can be used for various system input/output signals by setting the mode. (Refer to section 13.2)
(3) System input

Pin No.	Signal name	Normal mode	External point designation mode	Remarks
27	COM4	Common for system input		
28	Return to origin	ON: Start return to origin	Return to origin	Rising edge detection ON
29	Start	ON: Restart from currently stopped step or temporarily stopped state	ON: Start movement according to information in currently designated table	Rising edge detection
30	Stop	ON: Complete execution of current step and then stop	Invalid	When this input is ON, return to origin and start input are invalid
31	Reset	ON: Reset error state (Valid when program execution is stopped.)	ON: Reset error state	Rising edge detection ON

System input circuit

Inside controller

- The function for the return to origin input can be moved to the general-purpose input by setting the mode. (Refer to section 13.2.6.)
(4) System output

Pin No.	Signal name	Normal mode		External point designation mode
1	+COM1	Reference page		
11	Running	Common for output signal ON during controller execution/during return to origin	ON during robot operation	Section 10.2 .11
12	Error	ON during error occurrence	Same as left	Section 13
Positioning complete	ON when robot positioning is completed OFF when robot is moving (Stays OFF when stopped with pause)	Same as left	Section 10.2 .13	
14	Return to origin complete	ON while return-to-origin operation is not required for movement system command execution. OFF when return-to-origin operation is required.	Same as left.	Section
17	-COM2	Common for system output		

System output circuit

NOTE To use system output, supply external power to +COM1 (because the photocoupler output for old CA20-M10/M40 is changed to transistor output).
(5) Inputs and outputs that can be set for general-purpose input/output

Signal name	Input/ output	Details	Reference page
Robot single operation	Input	The single operation mode is entered when start is input or the start key is ON, and this input is ON . The commands that stop execution in this mode are the axis movement related and output related commands.	$\begin{aligned} & \text { Section } \\ & 10.2 .5 \end{aligned}$
Continuous start	Input	The data in the counter, etc., is held or cleared when the power is turned ON or when reset is input according to the status of this input.	$\begin{aligned} & \hline \text { Section } \\ & 10.2 .6 \end{aligned}$
Escape	Input	If this input turns ON during execution of the MVE command, the movement will decelerate and stop, and the step will be completed.	$\begin{aligned} & \hline \text { Section } \\ & 10.2 .7 \end{aligned}$
Pause (temporary stop)	Input	```ON: Temporary stop (The axis will decelerate and stop) Restart: Input start Cancel: Input reset```	$\begin{array}{\|l} \hline \text { Section } \\ 10.2 .8 \end{array}$
Program selection 2^{0} Program selection 2^{1} Program selection 2^{2} (Program selection 2^{3})	Input	Input program No. designation signal No. 1 to No. 8 using a binary number in sequential mode PSEL instruction, palletizing mode, and easy mode. Input point table No. designation signal No. 1 to No. 16 using a binary number in external point designation mode.	$\begin{array}{\|l} \text { Section } \\ 10.2 .9 \end{array}$
Operation mode selection	Input	ON: Palletizing mode OFF: Sequential mode	$\begin{aligned} & \text { Section } \\ & 10.2 .10 \end{aligned}$
Input wait output	Output	This turns ON when the program is waiting for an input.	$\begin{aligned} & \hline \text { Section } \\ & 10.2 .15 \end{aligned}$
Pausing	Output	This turns ON when the pause input is recognized and the axis decelerates and stops. This will turn OFF when pause is canceled.	$\begin{array}{\|l\|} \hline \text { Section } \\ 10.2 .16 \end{array}$
READY	Output	The operation status of the controller, including the master unit and slave unit is indicated. Preparing for operation: OFF Operation preparation complete: ON	$\begin{aligned} & \hline \text { Section } \\ & 10.2 .17 \end{aligned}$
Positioning per task complete	Output	ON when positioning per task is completed.	$\begin{aligned} & \hline \text { Section } \\ & \text { 10.2.18 } \end{aligned}$
Return to origin per task complete	Output	ON when return to origin per task is complete and axis is at origin position.	$\begin{aligned} & \hline \text { Section } \\ & \text { 10.2.19 } \end{aligned}$

- Refer to section 13.2 for details on setting this function.
- The pause input, pausing output and READY output can also be used in the external point designation mode.
10.1.3 Expansion input/output signal names and pin Nos.

PIN No.	Signal name	PIN No.	Signal name
1	+COM5	(Note 1)	14
2	General-purpose output port 2-1	15	General-purpose input port 2-1
3	General-purpose output port 2-2	16	General-purpose input port 2-2
4	General-purpose output port 2-3	17	General-purpose input port 2-3
5	General-purpose output port 2-4	18	General-purpose input port 2-4
6	General-purpose output port 2-5	19	General-purpose input port 2-5
7	General-purpose output port 2-6	20	General-purpose input port 2-6
8	General-purpose output port 2-7	21	General-purpose input port 2-7
9	General-purpose output port 2-8	22	General-purpose input port 2-8
10	N.C	23	General-purpose input port 3-1
11	N.C	24	General-purpose input port 3-2
12	N.C	25	General-purpose input port 3-3
13	-COM5	26	General-purpose input port 3-4

NOTE

(Note 1) +COM5 and COM6 are not connected internally.

Use the enclosed connector.

- Cable side connector type

Plug 10126-3000VE (Sumitomo 3M)
Shell kit 10326-52F0-008 (Sumitomo 3M)

- Panel side connector type

Receptacle 10226-52A2JL (Sumitomo 3M)
Applicable wire size: AWG24 (0.22 mm²)

■ 10.1.4Names of general-purpose input/output ports and Teach Pendant displays

In the controller's system configuration, there are master unit, slave unit and expansion input/output unit input/output ports. The No. of points will change according to the use of options. These input/output ports are displayed on the Teach Pendant as shown below.

10.1.5 Example of input/output signal connection

- Example of master unit connection

NOTE - COM3 and COM4, and -COM1 and -COM2 are not connected internally.

- To use system output, supply external power to +COM1 (because the photocoupler output for old CA20-M10/M40 is changed to transistor output).

- Example of slave unit connection

NOTE - COM3 and COM4 or -COM1 and -COM2 are not connected internally.

- To use system output, supply external power to +COM1 (because the photocoupler output for old CA20-S10/S40 is changed to transistor output).

NOTE +COM5 and COM6 are not connected internally.

10.2 Details of system input/output function

- 10.2.1 Return to origin input

- This input starts the return to origin.
- This input can be accepted only when the Teach Pendant is not connected or is turned OFF.
- This input will be invalid for approx. two seconds after the controller power is turned ON. Thus, turn it ON after two seconds or more have passed.
- Carry out the operation as shown below when executing return to origin after inputting the stop signal.

(Note 1) Turn the return to origin input ON after 30 ms or more has passed after the stop input has turned OFF.
(Note 2) Return the return to origin input to OFF after the positioning complete output has turned OFF.

■ 10.2.2 Start input

- This input restarts the operation from the currently stopped step or the temporarily stopped step.
- If operation is restarted with this input after inputting reset, in the sequential mode the program will start from step 0001. In the palletizing mode, the program No. selection input will be judged and then the program will start from the beginning. (Other than when holding of the step is designated with continuous start.)
- This input is valid only when the Teach Pendant is not connected or is turned OFF.
- When there are multiple tasks with the multitasking function, the program will start from the main task step that is currently stopped.

- 10.2.3 Stop input

- This input is used to stop the axis after the step currently being executed is ended. (During execution of the IN or TIM commands, after that step is completed.)
- After this input turns ON, return to origin and start input will be invalid.

- 10.2.4 Reset input

- This input resets the error state when an error has occurred.
- This input can be accepted only when execution of the program in the controller has been stopped. (When the program is not running.)
- When reset is input, the program will return to step 0001 in the sequential mode. In the palletizing mode, the step will be returned to the initial state. Furthermore, if the mode setting is the initial value, the general-purpose output will be held, and all of the counter details will be cleared to zero.
However, if continuous start input is designated, whether to hold or clear the values of each data can be designated. (Refer to section 10.2.6.)

- 10.2.5 Robot single operation input

- The general-purpose input port designated for robot single operation input with the mode setting can be used for the robot single operation input. (Refer to section 13.2.1.)
- This input is used to verify the program. If this signal is ON when start is input or the start key is pressed, the single operation mode will be entered.
The commands used to execute/stop in this mode are the axis movement related and output related commands.
- The robot single operation input is also led in as the general-purpose input data.

10.2.6 Continuous start input

- The general-purpose input port designated for robot continuous start input with the mode setting can be used for the robot continuous start input. (Refer to section 13.2.2.)
- Depending on the status (ON, OFF) of the continuous start input when the power is turned ON or reset is input, the values for the step No., counter and general-purpose output will be held or cleared. Whether to hold or clear each data according to the status of the continuous start input depends on the "status setting for when continuous start is valid" in the mode setting. (Refer to sections 13.2.12 and 13.2.13.)
- The continuous start input is also led in as the general-purpose input data.
- Continuous operation can be resumed only when the power is turned OFF while the program execution is stopped (stopped in normal state). If the power is turned OFF during execution of a program (when running output is ON) to stop the operation, continuous operation cannot be resumed. A continuous operation unavailable error will occur. (The operation can be continued when the emergency stop is applied.)
- In the easy mode, continuous start cannot be used after the power is turned OFF.

Continuousstart input		Valid (When bit is designated)		Invalid (When bit is not designated)
		When ON	When OFF	-
Reset input	Step No.	Refer to section 13.2.12	Refer to section 13.2.13	Initialize
	Counter			Clear
	General-purpose output			According to mode setting (initial value : Hold)
Power $\mathrm{OFF} \rightarrow \mathrm{ON}$	Step No.			Initialize
	Counter			Clear
	General-purpose output	Clear	Clear	Clear

■ 10.2.7 Escape input

- The general-purpose input port designated as the escape input with the mode setting can be used as the escape input. (Refer to section 13.2.3.)
- If the designated input port turns ON during execution of the MVE command, the robot will decelerate to a stop, and at the same time it will be interpreted that step has been completed. The next step will be executed. After the robot decelerates to a stop, the positioning complete output turns ON.
- The escape input is valid only for the MVE command.

10.2.8 Pause (temporary stop) input

- The general-purpose input port designated as the pause input with the mode setting can be used as the pause input. (Refer to section 13.2.4.)
- If this input turns ON during execution of the MOV system command, the axis will decelerate and stop. After the axis decelerates and stops, the positioning complete output also remains OFF.
The pause input is invalid in respect to commands other than the MOV system command.
- Pause input is invalid during return to origin with the return to origin input or during execution of the HOME command.
- To restart (start midway) after stopping temporarily, input start.

Note that the start input is invalid when the Teach Pendant is ON. In this case, use the start key on the Teach Pendant. Cancellation is also possible using reset.

10.2.9 Program No. selection input

The general-purpose input port designated as the program selection input with the mode setting can be used as the program selection 2^{0} to 2^{2} input. (Refer to section 13.2.5.)
In the external point designation mode (when the expansion input-output unit is not mounted), the general-purpose input port can be used as point table designation selection 2^{0} to 2^{3}. (Refer to the explanation of External point designation mode in section 8.)

(1) For sequential mode

- This input allows the program to be jumped to the required tag No. step by a 3-bit input signal from the external controller (programmable controller, digital switch, etc.). (Tag. No. 1 to 8)
- This input is valid only during execution of the PSEL command.

$1 \ldots$ ON					$0 \ldots$ OFF				
Tag No.	1	2	3	4	5	6	7	8	
Program selection 20 4	0	1	0	1	0	1	0	1	
${\text { Program selection } 2^{1}}^{4}$	0	0	1	1	0	0	1	1	
${\text { Program selection } 2^{2}}^{4}$	0	0	0	0	1	1	1	1	

[Example] If input pin 2^{0} is $\mathrm{ON}, 2^{1}$ is ON and 2^{2} is OFF during PSEL execution. The step for which tag No. "004" is input will be jumped to.

(2) For palletizing mode

- This input is the palletizing program No. selection input.
- This input is valid only when the start signal is input.
- The input signal and selection program No. are as follow.

$1 \ldots$ ON				$0 \ldots$ OFF				
Program No.	1	2	3	4	5	6	7	8
Program selection 2 0	0	1	0	1	0	1	0	1
Program selection 2 1	0	0	1	1	0	0	1	1
Program selection 2	0	0	0	0	1	1	1	1

(3) For external point designation mode

- This input is the point table designation input (when the expansion input/output unit is not mounted).
The value obtained by subtracting 1 from the designed point table No. is converted to a binary number, and 1 is set as ON and 0 is set as OFF to this input port.
[Example] For point table No.006:
6-1 = 5 (decimal) = 0101 (binary)
Set OFF input 2^{3}, ON input 2^{2}, OFF input 2^{1}, and ON input 2^{0}.

10.2.10 Palletizing input

- The general-purpose input port designated as the palletizing input with the mode setting can be used as the palletizing input. (Refer to section 13.2.16.)
- This is the sequential and palletizing mode changeover input. After resetting or execution of the END command, when the start input is turned ON, the controller will judge this signal and change the mode.

OFF : Sequential mode
ON : Palletizing mode

- This input can be accepted only when the Teach Pendant is not connected or when the Teach Pendant and RS-232C are invalid.

■ 10.2.11 Running output

- This signal turns ON when the controller is executing a program or during return to origin. In the external point designation mode, this signal will turn ON during robot operation.
- This signal remains ON even when the operation is stopped with the pause (temporary stop) input.
- This signal will turn OFF when the program is stopped with the END command or stop input.

- 10.2.12 Error output

- This signal turns ON when an error has occurred in the controller.
- Refer to Chapter 19 for details on the error types and processes.

■ 10.2.13 Positioning complete output

- This is the positioning complete signal used in the movement system commands.
- This signal turns ON when at the position (in-position).
- This signal will also turn ON when the origin is reached during return to origin.
- When using two to four axes, this signal will turn ON
 when all axes have completed positioning.

10.2.14 Return to origin complete output

- This is the origin return and HOME command execution completion signal.
- This signal will turn ON when the robot can identify the current position and return to origin is not required for execution of move instructions.
- This signal will turn OFF when return to origin is required for execution of move instructions due to an encoder-related error, etc.

10.2.15 Input wait output

- The general-purpose output port designated as input wait output with the mode setting can be used as the input wait output. (Refer to section 13.2.8.)
- This output turns ON during IN command execution (general-purpose wait state).

- 10.2.16 Pausing (temporarily stopped) output

- The general-purpose output port designated as pause output with the mode setting can be used as the pause output. (Refer to section 13.2.7.)
- The pause input is recognized and the robot is decelerated and stopped. This output will turn OFF when the pause is canceled.

- 10.2.17 READY output

- The general-purpose output port designated as READY output with the mode setting can be used as the READY output. (Refer to section 13.2.15.)
- This output turns ON when the power has been turned ON and the controller configured with the master unit and slave unit is ready for operation.
- This output is valid when the Teach Pendant is not connected or is turned OFF.

■ 10.2.18 Individual task positioning complete output

- After a general-purpose output port is designated for the individual task positioning complete output by the mode setting, the port can be used for individual task positioning complete output. (Refer to section 13.2.18.)
- This setting can set the positioning complete output separately for each task.

■ 10.2.19 Individual task return to origin complete output

- After a general-purpose output port is designated for the individual task return to origin complete output by the mode setting, the port can be used for individual task return to origin complete output. (Refer to section 13.2.19.)
- This setting can set the return to origin complete output separately for each task.

■ 10.2.20 Battery alarm output

- After a general-purpose output port is designated for the battery alarm output by the mode setting, the port can be used for battery alarm output. (Refer to section 13.2.22.)
- This signal is turned ON when a voltage drop occurs in the encoder backup power supply.

■10.3 RS-232C communication specifications

This ROlbot can communicate data with the host computer (personal computer, etc.) by using the optional communication cable (Type: PCBL-31). Refer to the RS-232C communication specifications for details.
Ask you nearest branch or dealer for the RS-232C communication specifications.

This page is blank.

Chapter 11 CC-Link

- 11.1 CC-Link Function

This controller enables adding of a CC-Link function by a CC-Link module. This chapter describes the CC-Link interface.

CC-Link is a field network interface that features a minimized wiring design in a low-cost structure and high-speed data communication. The CC-Link interface allows data communication for various input/output and jog operation.

-11.1.1 Overview

This controller serves as the remote device station (Fixed at four (4) stations) and allows communication of I/O data and other data.
Data communication is performed through remote registers RWw and RWr, and some of remote inputs RX and remote outputs RY are used.

?
*1 The data communication handshake signal on the robot controller side is created by the robot controller automatically.

11.1.2 CC-Link specifications

Item	Specification
Transmission specifications	CC-Link Ver 1.10
Communication speed	10M/5M/2.5M/625k/156kbps (Set by parameter)
Station type	Remote device station
Number of occupied stations	Fixed at 4 stations (RX/RY: 128 points each, RWw/RWr: 16 points each)
	$1-64$ (Set by parameter)
	System input: 4 points, System output: 4 points
	General-purpose input: 64 points, General-purpose output: 64 points
	Jog input: 8 points, Jog output: 8 points
	Handshake input: 1 point, Handshake output: 2 points
	Data selection input: 4 points, Data selection check output: 4 points
Data communication functions	Coordinate table sending and receiving, current position monitor, error code request, status request, etc.

*1: The input and output are based on the direction viewed from the robot controller.

- 11.1.3 How to attach the CC-Link module

11.1.4 Explanation of CC-Link component and external dimensions

CC-Link communication terminal block

CC-Link state display LED

$$
90(\mathrm{~W}) \times 160(\mathrm{H}) \times 134(\mathrm{D})
$$

(Not including the mounting bracket)
(1) CC-Link status display LED

Name	Color	On/Off	Description
RD	Gree n	On	When receiving data
		Off	When not receiving data
SD	Gree n	On	When sending data
		Off	When not sending data
ERR	Red	On	CRC error, error speed, error station number setting
		Off	During normal operation
RUN	Green	On	During normal operation
		Off	During timeout or network stoppage

(2) CC-Link connection terminal block

The exclusive CC-Link cable for data linkage is connected to this terminal block.

Pin No.	Signal name	Wire color
1	Communication line (DA)	Blue
2	Communication line (DB)	White
3	Digital ground (DG)	Yellow
4	Shield (SLD)	Shield

11.1.5 Connection of exclusive CC-Link cable

The order of cable connection is unrelated to the station number.
Be sure to connect the terminators for the units located at both ends of the CC-Link system. Connect each terminator between DA and DB.
In the CC-Link system, the terminator to be connected differs with the cable to be used.

Type of cable	Terminator
CC-Link exclusive cable	$110 \Omega, 1 / 2 \mathrm{~W}$ (Brown, brown, brown)
CC-Link exclusive cable designed for Ver 1.10	
CC-Link exclusive high-performance cable	$130 \Omega, 1 / 2 \mathrm{~W}$ (Brown, orange, brown)

No terminator is attached to this controller.
The master unit can be located at other than the both ends.
Star-connection is not possible.
The connecting method is shown below.

CC-Link exclusive cable

CC-Link
exclusive cable

For details on the cable connection, see the master station instruction manual and CC-Link cable wiring manual (published by the CC-Link Partner Association).

11.1.6 CC-Link settings

(1) CA20-M10-CC settings

The station number (MAC ID) and baud rate are specified by [PARA] M20 in the mode setting.
To enable a modified value, turn the power off and then on again. (Refer to section 13.2.20.)
(2) CC-Link master station settings

Make the CC-Link master station settings by following the master station operating manual.
The type of CA20-M10-CC is the remote device station, and the number of exclusive stations is four (4).

■11.2 Connection with External Devices

■ 11.2.1 List of master unit I/O signals

Signal direction: CC-Link master station \leftarrow CA20-M10-CC		Signal direction: CC-Link master station \rightarrow CA20-M10-CC	
Device No. (Input)	Signal name	Device No. (Output)	Signal name
RXn0	"Running" output	RYn0	Return to origin input
RXn1	Error output	RYn1	Start input
RXn2	Positioning finish output	RYn2	Stop input
RXn3	Return to origin finish output	RYn3	Reset input
RXn4~RXn7	Use prohibited	RYn4~RYn7	Use prohibited
$R X n 8 \sim R X n F$	General output port 1-1 ~ 8	RYn8~RYnF	General input port 1-1 ~ 8
$R X(n+1) 0 \sim R X(n+1) 7$	General output port 2-1 ~ 8	$R Y(n+1) 0 \sim R Y(n+1) 7$	General input port 2-1 ~ 8
$R X(n+1) 8 \sim R X(n+1) F$	General output port 3-1 ~ 8	$R Y(n+1) 8 \sim R Y(n+1) F$	General input port 3-1 ~ 8
$R X(n+2) 0 \sim R X(n+2) 7$	General output port 4-1 ~ 8	$R Y(n+2) 0 \sim R Y(n+2) 7$	General input port 4-1 ~ 8
$R X(n+2) 8 \sim R X(n+2) F$	General output port 5-1 ~ 8	$R Y(n+2) 8 \sim R Y(n+2) F$	General input port 5-1 ~ 8
$R X(n+3) 0 \sim R X(n+3) 7$	General output port 6-1 ~ 8	$R Y(n+3) 0 \sim R Y(n+3) 7$	General input port 6-1 ~ 8
$R X(n+3) 8 \sim R X(n+3) F$	General output port 7-1 ~ 8	$R Y(n+3) 8 \sim R Y(n+3) F$	General input port 7-1 ~ 8
$R X(n+4) 0 \sim R X(n+4) 7$	General output port 8-1 ~ 8	$R Y(n+4) 0 \sim R Y(n+4) 7$	General input port 8-1 ~ 8
$R X(n+4) 8 \sim R X(n+4) F$	Jog output (*3)	$R Y(n+4) 8 \sim R Y(n+4) F$	Jog input (*3)
$R X(n+5) 0 \sim R X(n+5) 7$		$R Y(n+5) 0 \sim R Y(n+5) 7$	
$R X(n+5) 8 \sim R X(n+5) F$	Reserved (*1)	$R Y(n+5) 8 \sim R Y(n+5) F$	Reserved (*1)
$R X(n+6) 0 \sim R X(n+6) 7$		$R Y(n+6) 0 \sim R Y(n+6) 7$	
$R X(n+6) 8$	Command processing finish (*2)	$R Y(n+6) 8$	Request for command processing (*2)
$R X(n+6) 9$	Command error (*2)	$R Y(n+6) 9$	Use prohibited
$R X(n+6) A \sim R X(n+6) B$	Use prohibited	$R Y(n+6) A \sim R Y(n+6) B$	Use prohibited
$R X(n+6) C \sim R X(n+6) F$	Data selection check output	$R Y(n+6) C \sim R Y(n+6) F$	Data selection input
$R X(n+7) 0 \sim R X(n+7) 7$	Use prohibited	RY($\mathrm{n}+7) 0 \sim R Y(\mathrm{n}+7) 7$	Use prohibited
$R X(n+7) 8 \sim R X(n+7) F$	Use prohibited	$R Y(n+7) 8 \sim R Y(n+7) F$	Use prohibited

$? \mathrm{n}$: Address assigned to the master unit by station number setting.
*1 Area reserved for future extension of function.
*2 Handshake signal for data transmission.
*3 Refer to sections 11.2.2 and 11.2.4.

11.2.2 System I/O

(1) System input (CC-Link master station \rightarrow CA20-M10-CC)

Signal name	Remote output (*1)	Normal mode	External point designation mode	Remarks
Return to origin	RYn0	ON: Start of return to origin operation.	Return to origin	Detection of leading edge
Start	RYn1	ON: Restart from currently stopped step or from feed hold state.	ON: Starts moving based on currently specified table information.	
Stop	RYn2	ON: Stops after current step has been executed.	Invalid	When this input is ON, return to origin and start input are invalid.
Reset	RYn3	ON: Cancels an error status. (Valid while program execution is stopped.)	ON: Cancels an error status.	
Jog input	$\begin{aligned} & R Y(n+4) 8 \\ & \sim \\ & R Y(n+4) F \end{aligned}$	A selected axis is moved by jogging after the motion mode (jog, low-speed or high-speed) and travel direction are specified.		Section 11.2.4

(2) System output (CA20-M10-CC \rightarrow CC-Link master station)

Signal name	Remote input (*1)	Normal mode	External point designation mode	Ref.
Running	RXn0	ON during controller operation and during return to origin.	ON during robot operation.	Section 10.2.11
Error	RXn1	ON at error generation.	Same as left	Section 10.2.12
Positioni ng finish	$R \mathrm{RXn} 2$	ON when the robot has been located at a predetermined position. OFF while the robot is moving. (Remains OFF when it is paused.)	Same as left	Section 10.2.13
Return to origin finish	$R \mathrm{RXn3}$	ON when return to origin is completed.	Same as left	Section 10.2.14
Jog output	$R X(n+4) 8$ \sim $R X(n+4) F$	Acceptance or rejection of jog, active status, etc. are displayed.	Section 11.2.4	

11.2.3 Name of general-purpose I/O port and teach pendant display

In the controller's system configuration, there are master unit, slave unit and expansion input/output unit input/output ports. The No. of points will change according to the use of options. These input/output ports are displayed on the Teach Pendant as shown below.

- For details on the port numbers and support for input devices and output devices, refer to section 12.2.1.

11.2.4 Jog input/output

(1) List of jog input/output signals

Signal direction: CC-Link master station \leftarrow CA20-M10-CC		Signal direction:	
Signal name	Output Device No.	Signal name master station \rightarrow CA20-M10-CC	

- When the jog conditions (inching request, low-speed jog request, high-speed jog request) and jog direction are specified, and the jog request is ON, the corresponding axis performs the jog operation. (Refer to Fig. 11.2.4-1.)
- Jogging by I/O signal is not accepted as long as the jog ready output signal is OFF. The jog ready output signal is OFF under the following conditions.
- While the robot is controlled through the teach pendant (T/P).
\rightarrow While the T/P is connected and turned on.
- While the robot is controlled by the personal computer software.
\rightarrow While the execution screen of the personal computer software is opened.
- While the "running" output is ON.
- While the error output is ON.
- When the multiple bits for the "request inching" input, "request low-sptun נvy in wut and "request high-speed jog" input are ON, the motions are executed according to the following order.
Inching > Low-speed jog > High-speed jog
- It is not possible to simultaneously move two (2) or more axes at jogging. Move each axis separately.
- The axis stops if the communication through the CC-Link has been severed during jogging.

Fig. 11.2.4-1 Example of First axis moving
(1) Make sure that the jog-ready signal is ON.
(2) Set the jog conditions. (In the above figure, low-speed jog and plus "+" direction are specified.)
(3) Turn on the "request axis 1 jog" input. (With this timing, the jog conditions are input.)
(4) The jog-ready output turns off and the "axis 1 jogging" output turns on. Then the axis 1 starts jogging at low speed in the plus "+" direction.
(5) To stop the axis, turn off the "request axis 1 jog" input signal.
(6) The jog-ready output turns on and the "axis 1 jogging" output turns off. Then the axis 1 jogging at low speed in the plus " + " direction stops.
(7) Make sure that the jog-ready signal is ON.
(8) Set the jog conditions. (In the above figure, high-speed jog and "-" direction are specified.)
(9) Turn on the "request axis 1 jog" input. (With this timing, the jog conditions are input.)
(10) The jog-ready output turns off and the "axis 1 jogging" output turns on. Then the axis 1 starts jogging at high speed in the minus "-" direction.
(11) Even if the jog conditions have been changed during travel, they are neglected.
(12) To stop the axis, turn off the "request axis 1 jog" input signal.
(13) The jog-ready output turns on and the "axis 1 jogging" output turns off. Then the axis 1 jogging at high speed in the minus "-" direction stops.

■11.3 Data Communication

■ 11.3.1 Overview of data communication

Two types of data communication are available: Command mode and Monitor mode.
In Command mode, the CA20-M10-CC returns reply to commands from the CC-Link master station. Although this enables complex data communication, its characteristic of returning replies to commands requires a certain amount of time for the data updating cycle.
In Monitor mode, the data selected by data selection input [RY($n+6$)C to RY($n+6$)F] and RWw(n) is constantly updated. This eliminates the need for complex handshake signals for realizing high-speed updating cycles.

In Command mode, set all the data selection input $[R Y(n+6) C$ to $R Y(n+6) F]$ to 0 . In Monitor mode, set from 0001 to 1111 based on the monitoring content.

No	RY($\mathrm{n}+6$) F	$R Y(n+6) E$	RY($\mathrm{n}+6) \mathrm{D}$	$\mathrm{RY}(\mathrm{n}+6) \mathrm{C}$	Mode	Description
1	0	0	0	0	Command mode (section 11.3.2)	Status request Writing of coordinate table Reading of coordinate table Current position request (monitor) Current offset value request (monitor) Counter value request (monitor) Counter set
2	0	0	0	1	Monitor mode (section 11.3.3)	Status monitor
3	0	0	1	0		Current position monitor
4	0	0	0	0		
5	0	0	0	0		Torque monitor (Note 2)
		Reserved
16	1	1	1	1		Reserved

Note 1: The counter monitor is controlled by a controller in version 2.88 n or later.
Note 2: The torque monitor is controlled by a controller in version 2.88 w or later.
The value of the data selection input $[R Y(n+6) C$ to $R Y(n+6) F]$ is output unchanged to the data selection check output $[R X(n+6) C$ to $R X(n+6) F]$. During this output, a time difference ($t=$ several 10 mSEC) occurs, and so pay attention to the timing when changing.

Signal name	Device	Timing
Data selection input signal	$\mathrm{RY}(\mathrm{n}+6) \mathrm{C} \sim \mathrm{RY}(\mathrm{n}+6) \mathrm{F}$	A
Data selection check output signal	$R X(n+6) C \sim R X(n+6) F$	$\stackrel{\rightarrow}{4} \xrightarrow{\rightarrow}$

[^0]
11.3.2 Command mode

In the relationship between the CA20-M10-CC and CC-Link master station, the CC-Link master station is always the main station, and the CA20-M10-CC is the secondary station. Communication uses a half-duplex system where the CC-Link master station issues commands and the CA20-M10-CC sends back a reply.
When the CA20-M10-CC receives a command that can be processed, an affirmative response or the necessary data is returned. If the process is not possible because the CA20-M10-CC is busy or other reasons, an error reply is returned.

11.3.2.1 Transmitting and receiving data

(1) Data flow and timing

(*1) Only when an error has occurred.

Signal name	Device	Timing
Command	RWwn \sim RWw $(\mathrm{n}+\mathrm{F})$	Previous command Command
"Request command processing" signal	$R Y(n+6) 8$	
Reply	$\mathrm{RWrn} \sim \mathrm{RWr}(\mathrm{n}+\mathrm{F})$	Previous reply $\quad-3$ Reply
Command processing finish signal	RX($\mathrm{n}+6) 8$	
Command error signal	$\mathrm{RX}(\mathrm{n}+6) 9$	-
Data selection input signal	$R Y(n+6) C \sim R Y(n+6) F$	0000
Data selection check output signal	$R X(n+6) C \sim R X(n+6) F$	0000

Set the data selection input $R Y(n+6) C$ to $R Y(n+6) F$ to 0000.
(1) Before sending a command, make sure that all handshake signals ("request command processing" signal, command processing finish signal and command error signal) are set OFF.
(2) Set the command in the remote register.
(3) The command set in the remote register is transferred to the CA20-M10-CC "receive command" buffer via the link scan of the CC-Link.
(4) The "request command processing" signal is turned on.
(5) The command is processed based on the data in the "receive command" buffer in Step (3) above.
(6) The results are set in the "send reply" buffer.
(7) The response set in the "send reply" buffer is transferred to the remote register of the CC-Link master station via the link scan of the CC-Link.
(8) The command processing finish signal turns on.
(8)' If an error has occurred, the command error signal turns on at the same time.
(9) The "request command processing" signal turns off.
(10) The command processing finish signal turns off.
(10) If the command error signal is ON, it turns off at the same time.

11.3.2.2 Command table

No.	Description	Mode	Command/reply	Remote register (Command = RWwn, Reply = RWrn)					
				+0	+1	+2	+3	+4 ~ + ${ }^{\text {P }}$	+C ~ + F
1	Request status	O	Command	B900H	Status No.				Reserved (0 fixed)
			Reply			Status value	Error code		Reserved (0 fixed)
2	Write coordinate table	O	Command	C 2 C 1 H	Table No.	$\begin{gathered} 0 \\ \text { (fixed) } \end{gathered}$	$\begin{gathered} 0 \\ \text { (fixed) } \\ \hline \end{gathered}$	Axis 1 ~ Axis 2 coordinates	$\begin{array}{r} \text { Reserved } \\ \text { (0 fixed) } \\ \hline \end{array}$
			Reply		$\begin{gathered} 0 \\ \text { (fixed) } \end{gathered}$	$\begin{gathered} 0 \\ \text { (fixed) } \end{gathered}$	Error code		Reserved (0 fixed)
3	Read coordinate table	O	Command	C3C1H	Table No.				Reserved (0 fixed)
			Reply			$\begin{gathered} 0 \\ \text { (fixed) } \end{gathered}$	Error code	Axis 1 ~ Axis 2 coordinates	Reserved (0 fixed)
4	Request current position (monitor)	O	Command	E300H					$\begin{array}{r} \text { Reserved } \\ (0 \text { fixed) } \\ \hline \end{array}$
			Reply		$\begin{gathered} 0 \\ \text { (fixed) } \end{gathered}$	$\begin{gathered} 0 \\ \text { (fixed) } \end{gathered}$	Error code	Axis 1 ~ Axis 2 coordinates	Reserved (0 fixed)
5	Requestcurrent offsetvalue(monitor)	O	Command	E400H					$\begin{array}{r} \text { Reserved } \\ (0 \text { fixed) } \\ \hline \end{array}$
			Reply		$\begin{gathered} 0 \\ \text { (fixed) } \end{gathered}$	$\begin{gathered} 0 \\ \text { (fixed) } \end{gathered}$	Error code	Axis 1 ~ Axis 2 coordinates	$\begin{aligned} & \text { Reserved } \\ & (0 \text { fixed) } \\ & \hline \end{aligned}$
6	Request counter value (monitor)	O	Command	E500H	Counter No.				Reserved (0 fixed)
			Reply			Counter value	Error code		$\begin{array}{r} \hline \text { Reserved } \\ (0 \text { fixed) } \\ \hline \end{array}$
7	Set counter	0	Send	E700H	Counter No.	Counter value			Reserved (0 fixed)
			Reply		$\begin{gathered} 0 \\ \text { (fixed) } \end{gathered}$	$\begin{gathered} 0 \\ \text { (fixed) } \\ \hline \end{gathered}$	Error code		$\begin{array}{r} \text { Reserved } \\ \text { (0 fixed) } \\ \hline \end{array}$
8	Write speed table	O	Send	C2C2H	Table No.	$\begin{gathered} 0 \\ \text { (fixed) } \end{gathered}$	$\begin{gathered} 0 \\ \text { (fixed) } \\ \hline \end{gathered}$	Speed	Reserved (0 fixed)
			Reply		$\begin{gathered} 0 \\ \text { (fixed) } \end{gathered}$	$\begin{gathered} 0 \\ \text { (fixed) } \end{gathered}$	Error code		Reserved (0 fixed)
9	Read speed table	O	Send	C3C2H	Table No.				$\begin{aligned} & \text { Reserved } \\ & (0 \text { fixed) } \\ & \hline \end{aligned}$
			Reply			$\begin{gathered} 0 \\ \text { (fixed) } \end{gathered}$	Error code	Speed	Reserved (0 fixed)
10	Write acceleration/	O	Send	C2C3H	Table No.	$\begin{gathered} 0 \\ \text { (fixed) } \end{gathered}$	$\begin{gathered} 0 \\ \text { (fixed) } \end{gathered}$	Time to set speed	Reserved (0 fixed)
	deceleration table		Reply		$\begin{gathered} 0 \\ \text { (fixed) } \end{gathered}$	$\begin{gathered} 0 \\ \text { (fixed) } \end{gathered}$	$\begin{aligned} & \text { Error } \\ & \text { code } \end{aligned}$		$\begin{array}{r} \text { Reserved } \\ (0 \text { fixed) } \\ \hline \end{array}$
11	Read acceleration/	O	Send	C3C3H	Table No.				$\begin{array}{r} \text { Reserved } \\ (0 \text { fixed) } \\ \hline \end{array}$
	deceleration table		Reply			$\begin{gathered} 0 \\ \text { (fixed) } \end{gathered}$	Error code	Time to set speed	$\begin{array}{r} \text { Reserved } \\ \text { (0 fixed) } \\ \hline \end{array}$
12	Write override	O	Send	D900H	Override				Reserved (0 fixed)
			Reply		$\begin{gathered} 0 \\ \text { (fixed) } \end{gathered}$	$\begin{gathered} 0 \\ \text { (fixed) } \end{gathered}$	Error code		Reserved (0 fixed)
13	Read override	O	Send	DAOOH					Reserved (0 fixed)
			Reply		Override	0(fixed)	Error code		$\begin{array}{r} \text { Reserved } \\ (0 \text { fixed) } \\ \hline \end{array}$
14	Torque monitor	0	Send	EE08H					$\begin{aligned} & \text { Reserved } \\ & \text { (0 fixed) } \end{aligned}$
			Reply		0(fixed)	0(fixed)	Error code	Axis 1 torque	Reserved (0 fixed)

Note : No. 8 to No. 14 is used by a controller in version 2.88 w or later.

O Can be accepted at all times.

- Can be accepted only when the program is stopped. (If data is transmitted during program execution, an error occurs.)
Error code
0000H Normal
1000 H Command analysis error (An error is found in the command.)
$20^{* *} \mathrm{H}$ Command cannot be executed. (See the explanation of each command.)

11.3.2.3 Descriptions on each command

(1) "Request Status" Command (B900H)

Command (CC-Link master station \rightarrow CA20-M10-CC)			
Remote register	b15------b8	b7------b0	Remarks
$R W w n$	B9H	00 H	Command
RWw(n+1)	K0-K2		Status number
$R W w(n+2)$ \sim $R W w(n+F)$	Fixed at "K0"	Use prohibited	

Response (CC-Link master station \leftarrow CA20-M10-CC)				
Remote register	b15------b8	b7------b0	Remarks	
RWrn	B9H	00 H	Same value as command	
RWr(n+1)	K0-K2		Status number	
RWr(n+2)	00		${ }^{* *} \mathrm{H}$	Status value (*1)
$R W r(n+3)$	Error code			
RWr(n+4) \sim $R W r(n+F)$	Fixed at "K0"		Unused	

*1 The status value is saved in the lower byte.
The upper byte is always fixed at " 00 ".
Error code
0000H Normal
1000 H Command analysis error (An error is found in the command.)
Details of each status

Status 0		Status 1		Status 2	
BIT	Description	BIT	Description	BIT	Description
0	1: Error is found.	0	Error code (See section 19.2.)	0	00: Sequential mode 01: Palletizing mode 10: External point designation mode 11: Easy mode
1	1: During execution	1		1	
2	1: During pause	2		2	00: Auto mode 01: Step mode
3	1: During return to origin	3		3	10: Program mode
4	1: Return to origin finish	4		4	1: Single operation mode
5	1: Positioning finish	5		5	1: Pulse frequency input mode
6		6		6	1: Teach pendant ON
7	1: Change in Parameter 2.	7		7	1: Host computer ON

(2) "Write coordinate table" command (C2C1H)

Command (CC-Link master station \rightarrow CA20-M10-CC)			
Remote register	b15------b8	b7------b0	Remarks
RWwn	C 2 H	C 1 H	Command
RWw ${ }^{\text {n }}$ +1)	K1-K999		Table number
RWw ${ }^{\text {(n+2) }}$	K1-K4		Task number
$R W w(n+3)$	Fixed at "K0"		Use prohibited
$R W w(n+4)$	K-800000 ~K+800000		Axis 1 coordinate
RWw ${ }^{\text {n }}$ +5)			
$R W w(n+6)$	K-800000~K+800000		Axis 2 coordinate
RWw ${ }^{\text {n }}$ +7)			
$\begin{aligned} & \mathrm{RWw}(\mathrm{n}+8) \\ & \sim \\ & \mathrm{RWw}(\mathrm{n}+\mathrm{F}) \end{aligned}$	Fixed at "K0"		Use prohibited

Response (CC-Link Master station \leftarrow CA20-M10-CC)			
Remote register	b15------b8	b7------b0	Remarks
$R W r n$	C2H	C1H	Same value as command
$\operatorname{RWr}(\mathrm{n}+1)$	Fixed at "K0"	Unused	
$\mathrm{RWr}(\mathrm{n}+2)$	Fixed at "K0"	Unused	
$\mathrm{RWr}(\mathrm{n}+3)$	Error code		
$\mathrm{RWr}(\mathrm{n}+4)$ $\underset{\sim}{\sim}$ $\mathrm{RWr}(\mathrm{n}+\mathrm{F})$	Fixed at "K0"	Unused	

? - Data length of coordinate value: 32 bits

- Unit of coordinate value: 0.01 [mm] (Ex.: +100.00 [mm] $\rightarrow \mathrm{K}+10000$)
- When writing "********", specify H7FFFFFFF.
- When 0 is specified in task number, the controller controls for an active task. Error code

0000H Normal
1000 H Command analysis error (An error is found in the command.)
(3) "Read coordinate table" command (C3C1H)

Command (CC-Link master station \rightarrow CA20-M10-CC)				Response (CC-Link master station \leftarrow CA20-M10-CC)			
Remote register	b15------b8	b7------b0	Remarks	Remote register	b15------b8	b7------b0	Remarks
RWwn	C3H	C1H	Command	RWrn	C3H	C1H	Same value as command
RWw $(\mathrm{n}+1)$	K1-K999		Table number	$\mathrm{RWW}(\mathrm{n}+1)$	K1-K	999	Table number
RWw($\mathrm{n}+2$)	K1-K4		Task number	$\mathrm{RWWr}(\mathrm{n}+2)$	Fixed a	at "K0"	Unused
$\begin{aligned} & R W w(n+3) \\ & R W w(n+F) \end{aligned}$	Fixed at "K0"		Use prohibited	$\mathrm{RWr}(\mathrm{n}+3)$	Error	code	
			RWr(n+4)	K-800000~K+800000		Axis 1 coordinate	
			RWr(n+5)				
			RWr $(\mathrm{n}+6)$	K-800000~K+800000		Axis 2 coordinate	
			RWr $(\mathrm{n}+7)$				
			$\begin{aligned} & \underset{\sim}{\operatorname{RWr}(\mathrm{n}+8)} \\ & \mathrm{RWr}(\mathrm{n}+\mathrm{F}) \\ & \hline \end{aligned}$	Fixed at "K0"		Unused	

?

- Data length of coordinate value: 32 bits
- Unit of coordinate value: 0.01 [mm] (Ex.: +100.00 [mm] $\rightarrow \mathrm{K}+10000$)
- When writing "********", reply H7FFFFFFF.
- When 0 is specified in task number, the controller controls for an active task. Error code

0000H Normal
1000 H Command analysis error (An error is found in the command.)
2003H Access to coordinate table is not possible. (During writing of EEPROM)
(4) "Request current position" (monitor) command (E300H)

Command (CC-Link master station \rightarrow CA20-M10-CC)				Response (CC-Link master station \leftarrow ¢ CA20-M10-CC)			
Remote register	b15------b8	b7------b0	Remarks	Remote register	b15------b8	b7------b0	Remarks
RWwn	E3H	00	Command	RWrn	E3H	00H	Same value as command
$R W w(n+1)$	K1-K4		Task number	RWr($\mathrm{n}+1$)	Fixed at "K0"		Unused
$\begin{aligned} & \underset{R W w}{\sim}(n+2) \\ & R W w(n+F) \end{aligned}$	Fixed at "K0"		Use prohibited	RWr $(\mathrm{n}+2)$	Fixed at "K0"		Unused
			RWr($\mathrm{n}+3$)	Error code			
			RWr($\mathrm{n}+4$)	K-800000 ~ K+800000		Axis 1 coordinate	
			RWr($\mathrm{n}+5$)				
			RWr($\mathrm{n}+6$)	K-800000 ~ K+800000		Axis 2 coordinate	
			RWr(n+7)				
			$\begin{aligned} & \underset{\operatorname{RWr}(\mathrm{n}+8)}{\sim} \\ & \mathrm{RWr}(\mathrm{n}+\mathrm{F}) \end{aligned}$	Fixed at "K0"		Unused	

? - Data length of coordinate value: 32 bits

- Unit of coordinate value: 0.01 [mm] (Ex.: +100.00 [mm] $\rightarrow \mathrm{K}+10000$)
- When 0 is specified in task number, the controller controls for an active task. Error code

0000H Normal
1000H Command analysis error (An error is found in the command.)
(5) "Request current offset value" (monitor) command (E400H)

Command (CC-Link master station \rightarrow CA20-M10-CC)				Response (CC-Link master station \leftarrow ¢ CA20-M10-CC)			
Remote register	b15------b8	b7------b0	Remarks	Remote register	b15------b8	b7------b0	Remarks
RWwn	E4H	00	Command	RWrn	E4H	00H	Same value as command
RWw ${ }^{\text {(}} \mathrm{n}+1$)	K1-K4		Task number	$\mathrm{RWr}(\mathrm{n}+1)$	Fixed at "K0"		Unused
$\begin{aligned} & R W w(n+2) \\ & \sim W W(n+F) \end{aligned}$	Fixed at "K0"		Use prohibited	$\mathrm{RWWr}(\mathrm{n}+2)$	Fixed at "K0"		Unused
			RWr $(\mathrm{n}+3)$	Error code			
			$\mathrm{RWWr}(\mathrm{n}+4)$	K-800000~K+800000		Axis 1 coordinate	
			$\mathrm{RWWr}(\mathrm{n}+5)$				
			$\mathrm{RWr}(\mathrm{n}+6)$	K-800000~K+800000		Axis 2 coordinate	
			$\mathrm{RWr}(\mathrm{n}+7)$				
			$\begin{aligned} & \operatorname{RWr}(\mathrm{n}+8) \\ & \sim \\ & \operatorname{RWr}(\mathrm{n}+\mathrm{F}) \end{aligned}$	Fixed at "K0"		Unused	

? - Data length of coordinate value: 32 bits

- Unit of coordinate value: 0.01 [mm] (Ex.: +100.00 [mm] $\rightarrow \mathrm{K}+10000$)
- When 0 is specified in task number, the controller controls for an active task. Error code

0000H Normal
1000H Command analysis error (An error is found in the command.)
(6) "Request counter value" (monitor) command (E500H)

Command (CC-Link master station \rightarrow CA20-M10-CC)				Response (CC-Link master station \leftarrow CA20-M10-CC)			
Remote register	b15------b8	b7------b0	Remarks	Remote register	b15------b8	b7------b0	Remarks
RWwn	E5H	00H	Command	RWrn	E5H	00H	Same value as command
RWw ${ }^{\text {(n+1) }}$	K1-K99		Counter number	RWr(n+1)	K1-K99		Counter number
$\begin{aligned} & R W w(n+2) \\ & \underset{R W w}{\sim}(n+F) \end{aligned}$	Fixed at "K0"		Use prohibited	RWr($\mathrm{n}+2$)	K0-K9999		Counter value
			RWr($\mathrm{n}+3$)	Error code			
			$\begin{aligned} & \mathrm{RWr}(\mathrm{n}+4) \\ & \sim \\ & \mathrm{RWr}(\mathrm{n}+\mathrm{F}) \end{aligned}$	Fixed at "K0"		Unused	

$? \begin{array}{r}\text { Error code } \\ 0000 \mathrm{H} \\ 1000 \mathrm{H}\end{array}$
Normal
1000 H Command analysis error (An error is found in the command.)
(7) "Set counter" command (E700H)

Command (CC-Link master station \rightarrow CA20-M10-CC)				Response (CC-Link master station \leftarrow CA20-M10-CC)			
Remote register	b15------b8	b7------b0	Remarks	Remote register	b15------b8	b7------b0	Remarks
RWwn	E7H	00H	Command	RWrn	E7H	00H	Same value as command
RWw(n+1)	K1-K99		Counter number	$\mathrm{RWr}(\mathrm{n}+1)$	Fixed	t "K0"	Unused
$R W w(n+2)$	K0-K9999		Counter value	$\mathrm{RWr}(\mathrm{n}+2)$	Fixed	t "K0"	Unused
$\begin{aligned} & \underset{\sim W W}{\sim}(n+3) \\ & R W w(n+F) \end{aligned}$	Fixed at "K0"		Use prohibited	$\operatorname{RWr}(\mathrm{n}+3)$	Error code		
			$\begin{aligned} & \underset{\sim}{\operatorname{RWr}(\mathrm{n}+4)} \\ & \mathrm{RWr}(\mathrm{n}+\mathrm{F}) \end{aligned}$	Fixed at "K0"		Unused	

$? \begin{array}{r}\text { Error code } \\ 0000 \mathrm{H} \\ 1000 \mathrm{H}\end{array}$

Normal

Command analysis error (An error is found in the command.)
(8) " Write speed table " command (C2C2H)

Command (CC-Link master station \rightarrow CA20-M10-CC)				Response (CC-Link master station \leftarrow CA20-M10-CC)			
Remote register	b15------b8	b7------b0	Remarks	Remote register	b15------b8	b7-----b0	Remarks
RWwn	C2H	C2H	Command	RWrn	C2H	C2H	Same value as command
RWw ${ }^{\text {(n+1) }}$	K1-K10		table number	$\mathrm{RWr}(\mathrm{n}+1)$	Fixed a	at "K0"	Unused
RWw($\mathrm{n}+2$)	Fixed at "K0"		Use prohibited	RWr $(\mathrm{n}+2)$	Fixed a	at "K0"	Unused
RWw($\mathrm{n}+3$)	Fixed at "K0"		Use prohibited	$\mathrm{RWr}(\mathrm{n}+3)$	Error	code	
RWw ${ }^{\text {n }}$ +4)	K10-K9999		Speed	$\begin{aligned} & \underset{\operatorname{RWr}(\mathrm{n}+4)}{\sim} \\ & \mathrm{RWr}(\mathrm{n}+\mathrm{F}) \end{aligned}$	Fixed at "K0"		Unused
RWw(n+5)							
$\begin{aligned} & R W w(n+3) \\ & \sim \\ & R W w(n+F) \end{aligned}$	Fixed at "K0"		Use prohibited				

?

- Data length of speed value: 32 bits
- Unit of speed value: 0.1 [mm/SEC] (Ex.: $+100.00[\mathrm{~mm} / \mathrm{SEC}] \rightarrow \mathrm{K}+1000$)

Error code
0000H Normal
1000 H Command analysis error (An error is found in the command.)
(9) " Read speed table " command (C3C2H)

Command (CC-Link master station \rightarrow CA20-M10-CC)				Response (CC-Link master station \leftarrow CA20-M10-CC)			
Remote register	b15------b8	b7------b0	Remarks	Remote register	b15------b8	b7-----b0	Remarks
RWwn	C3H	C2H	Command	RWrn	C3H	C2H	Same value as command
RWw(n+1)	K1-K10		Table number	RWr(n+1)	K1-K		Table number
$\begin{aligned} & \underset{R W w(n+2)}{\sim} \\ & R W w(n+F) \end{aligned}$	Fixed at "K0"		Use prohibited	RWr $(\mathrm{n}+2)$	Fixed a	at "K0"	Unused
			RWr $(\mathrm{n}+3$)	Error	code		
			$\mathrm{RWWr}(\mathrm{n}+4)$	K10-K9999		Speed	
			RWr($\mathrm{n}+5$)				
			$\begin{aligned} & \mathrm{RWr}(\mathrm{n}+6) \\ & \sim \\ & \mathrm{RWr}(\mathrm{n}+\mathrm{F}) \\ & \hline \end{aligned}$	Fixed at "K0"		Unused	

? - Data length of speed value: 32 bits

- Unit of speed value: 0.1 [mm/SEC] (Ex.: +100.00[mm/SEC] $\rightarrow \mathrm{K}+1000$)

Error code
0000H Normal
1000 H Command analysis error (An error is found in the command.)
(10) " Write acceleration/deceleration table " command (C2C3H)

Command (CC-Link master station \rightarrow CA20-M10-CC)				Response (CC-Link master station \leftarrow CA20-M10-CC)			
Remote register	b15------b8	b7------b0	Remarks	Remote register	b15------b8	b7------b0	Remarks
RWwn	C2H	C3H	Command	RWrn	C2H	C3H	Same value as command
RWw ${ }^{\text {(}} \mathrm{n}+1$)	K1-K20		table number	$\mathrm{RWr}(\mathrm{n}+1)$	Fixed at "KO"		Unused
$R W W$ ($\mathrm{n}+2$)	Fixed at "K0"		Use prohibited	$\mathrm{RWr}(\mathrm{n}+2)$	Fixed at "K0"		Unused
$R W w(n+3)$	Fixed at "K0"		Use prohibited	$\mathrm{RWr}(\mathrm{n}+3)$	Error code		
$R W w(n+4)$	K1-K999		Time to set speed	$\begin{aligned} & \underset{\operatorname{RWr}(\mathrm{n}+4)}{\sim} \\ & \mathrm{RW}(\mathrm{n}+\mathrm{F}) \end{aligned}$	Fixed at "K0"		Unused
$R W w(n+5)$							
$\begin{aligned} & \mathrm{RWw}(\mathrm{n}+6) \\ & \sim \\ & \mathrm{RWw}(\mathrm{n}+\mathrm{F}) \end{aligned}$	Fixed at "K0"		Use prohibited				

- Data length of "time to set speed" value: 32 bits
? - Unit of "time to set speed" value: 0.01 [SEC] (Ex.: $+0.30[S E C] \rightarrow \mathrm{K}+30$)
Error code
0000H Normal
1000 H Command analysis error (An error is found in the command.)

Command (CC-Link master station \rightarrow CA20-M10-CC)

Remote register	b15------b8	b7------b0	Remarks
RWwn	C3H	C3H	Command
RWw(n+1)	K1-K20	Table number	
$R W w(n+2)$ \sim $R W w(n+F)$	Fixed at "K0"	Use prohibited	

Response (CC-Link master station \leftarrow CA20-M10-CC)			
Remote register	b15------b8	b7-----b0	Remarks
RWrn	C3H	C3H	Same value as command
RWr($\mathrm{n}+1$)	K1-K20		Table number
RWr $(\mathrm{n}+2)$	Fixed at "K0"		Unused
RWr($\mathrm{n}+3$)	Error code		
$\mathrm{RWr}(\mathrm{n}+4)$	K1-K999		Time to set speed
$\operatorname{RWr}(\mathrm{n}+5)$			Time to set speed
$\begin{aligned} & \mathrm{RWr}(\mathrm{n}+6) \\ & \underset{\sim}{\mathrm{RWr}(\mathrm{n}+\mathrm{F})} \\ & \hline \end{aligned}$	Fixed at "K0"		Unused

0

- Data length of "time to set speed" value: 32 bits
- Unit of "time to set speed" value: 0.01 [SEC] (Ex.: $+0.30[S E C] \rightarrow K+30)$

Error code
0000H Normal
1000 H Command analysis error (An error is found in the command.)
(12) " Write override " command (D900H)

Command (CC-Link master station \rightarrow CA20-M10-CC)				Response (CC-Link master station \leftarrow CA20-M10-CC)			
Remote register	b15------b8	b7------b0	Remarks	Remote register	b15------b8	b7------b0	Remarks
RWwn	D9H	00H	Command	RWrn	D9H	00H	Same value as command
RWw(n+1)	K1-K100		Override	$\mathrm{RWr}(\mathrm{n}+1)$	Fixed a	at "K0"	Unused
$\begin{aligned} & R W w(n+2) \\ & \sim \\ & R W w(n+F) \end{aligned}$	Fixed at "K0"		Use prohibited	$\mathrm{RWWr}(\mathrm{n}+2)$	Fixed	at "K0"	Unused
			$\mathrm{RWWr}(\mathrm{n}+3)$	Error	code	Unused	
			$\begin{aligned} & \underset{\sim}{\operatorname{RWr}(\mathrm{n}+4)} \\ & \mathrm{RWr}(\mathrm{n}+\mathrm{F}) \\ & \hline \end{aligned}$	Fixed at "K0"			

- Unit of override value: [\%]

2
Error code
0000H
1000 H Command analysis error (An error is found in the command.)
2000H Controller error state
(13) " Read override " command (DAOOH)

Command (CC-Link master station \rightarrow CA20-M10-CC)				Response (CC-Link master station \leftarrow CA20-M10-CC)			
Remote register	b15------b8	b7------b0	Remarks	Remote register	b15------b8	b7------b0	Remarks
RWwn	DAH	00H	Command	RWrn	DAH	00H	Same value as command
$\begin{aligned} & R W w(n+1) \\ & \underset{R W w}{\sim}(n+F) \end{aligned}$	Fixed at "K0"		Use prohibited	$\operatorname{RWr}(\mathrm{n}+1)$	K1-K100		Override
			RWr $(\mathrm{n}+2)$	Fixed at "K0"		Unused	
			$\operatorname{RWr}(\mathrm{n}+3)$	Error code			
			$\begin{aligned} & \mathrm{RWr}(\mathrm{n}+4) \\ & \underset{\sim}{\sim}(\mathrm{n}+\mathrm{F}) \end{aligned}$	Fixed at "K0"		Unused	

? Error code
0000H Normal
1000 H Command analysis error (An error is found in the command.)
2000 H Controller error state
(14) " Read override " command (DAOOH)

Command (CC-Link master station \rightarrow CA20-M10-CC)				Response (CC-Link master station \leftarrow CA20-M10-CC)			
Remote register	b15------b8	b7------b0	Remarks	Remote register	b15------b8	b7------b0	Remarks
RWwn	EEH	08H	Command	RWrn	EEH	08H	Same value as command
$\begin{aligned} & \underset{R W w(n+1)}{\sim} \\ & R W w(n+F) \end{aligned}$	Fixed at "K0"		Use prohibited	$\mathrm{RWr}(\mathrm{n}+1)$	Fixed	"K0"	Unused
			RWr($\mathrm{n}+2$)	Fixed	t "K0"	Unused	
			RWr $(\mathrm{n}+3)$	Error	code		
			RWr($\mathrm{n}+4$)	K-999-K999		Axis 1 torque	
			RWr($\mathrm{n}+5$)				
			$\begin{aligned} & \mathrm{RWr}(\mathrm{n}+6) \\ & \sim \\ & \mathrm{RWr}(\mathrm{n}+\mathrm{F}) \\ & \hline \end{aligned}$	Fixed at "K0"		Unused	

2

- Data length of torque value: 32 bits
- Unit of torque value: 0.01 [T] (Ex.: $+2.00[T] \rightarrow K+200)$
- T: Rating torque
- It is impossible to monitor axis 2 to axis 4 .

Error code
0000H Normal
1000 H Command analysis error (An error is found in the command.)

11.3.3 Monitor mode

In Monitor mode, the data selected by data selection input $[R Y(n+6) C$ to $R Y(n+6) F]$ is constantly updated for realizing high-speed updating cycles.

- 11.3.3.1 Data receiving method

(1) Data flow and timing

- For the values of the data selection signal and data selection check sianal. refer to section 12.3.3.2.
(1) Set the data selection signal and data selection auxiliary register.
(2) The data selection signal is transferred to CA20-M00/M01 by the CC-Link scan.
(3) The data selected by the data selection signal and data selection auxiliary register is set to the data send buffer. The data send buffer is updated at 1-ms cycles.
(4) Set the data selection check signal. Set the value of the data selection check signal to the same value as the data selection signal.
(5) The data selection check signal that was set in step (4) is transferred to the remote input (RX) of the CC-Link master station by the CC-Link scan.
(6) The data that was set in step (3) is transferred to the remote register (RWr) of the CC-Link master station by the CC-Link scan.

11.3.3.2 List of monitor types

No.	Description	Data selection input signal				Auxiliary register	Remarks
		$\mathrm{RY}(\mathrm{n}+6) \mathrm{F}$	$R Y(n+6) E$	RY($n+6$) D	$\mathrm{RY}(\mathrm{n}+6) \mathrm{C}$	RWwn	
1	Status monitor	0	0	0	1	Unused	
2	Current position monitor	0	0	1	0	Unused	
3	Counter monitor ${ }^{* 1}$	0	0	1	1	0000h	Arbitrary selection mode
						0001h	Designated sequence number mode
4	Torque monitor ${ }^{2}$	0	1	0	0	Unused	
5	Reserved	0	1	0	1	-	
\cdots	Reserved	\cdots	\cdots	\cdots	.	-	
15	Reserved	1	1	1	1	-	

Note 1: The counter monitor is controlled by a controller in version 2.88 n or later.
Note 2: The torque monitor is controlled by a controller in version 2.88 w or later.

11.3.3.3 Explanation of monitors

(1) Status monitor

Remote register	b15------b8	b7-----b0	Remarks
RWrn	00H	01H	Data selection check (*1)
$\mathrm{RWr}(\mathrm{n}+1)$	Fixed at K0		Use prohibited
RWr(n+2)	Fixed at K0		Use prohibited
$\mathrm{RWr}(\mathrm{n}+3)$	Fixed at K0		Use prohibited
$\mathrm{RWr}(\mathrm{n}+4)$	00H	** H	Status 0 (*2)
$\mathrm{RWr}(\mathrm{n}+5)$	00H	**H	Status 1 (*2)
$\mathrm{RWr}(\mathrm{n}+6)$	00H	** H	Status 2 (*2)
RWr($\mathrm{n}+7$)	00H	**H	Status 3 (*2)
$\begin{gathered} \underset{R W r(n+F)}{\sim} \end{gathered}$	Fixed at K0		Use prohibited

*1: The same value as the data selection check output signal $R X(n+6) C$ to $R X(n+6) F$ is stored.
*2: The status value is stored to the lower byte. The upper byte is constantly fixed at 00 .

Status 0			Status 1	Status 2	
BIT	Description	BIT	Description	BIT	Description
0	1: Error occurred	0	Error code (Refer to section 19.2.)	0	00: Sequential mode 01: Palletizing mode 10: Point mode 11: Easy mode
1	1: Execution in progress	1		1	
2	1: Pause in progress	2		2	00: Auto mode
3	1: Return to origin in progress	3		3	10: Program mode
4	1: Return to origin complete	4		4	1: Single operation mode
5	1: Positioning complete	5		5	1: Pulse train input mode
6		6		6	1: Teach pendant ON
7	1: Parameter 2 modified	7		7	1: Host computer ON

Status 3	
BIT	Description
0	1: Servo ON
1	
2	
3	
4	
5	
6	
7	

(2) Current position monitor

Remote register	b15------b8	b7------b0	Remarks
RWrn	00H	02H	Data selection check (*1)
$\mathrm{RWr}(\mathrm{n}+1)$	Fixed at K0		Use prohibited
$\mathrm{RWr}(\mathrm{n}+2)$	Fixed at K0		Use prohibited
$\mathrm{RWr}(\mathrm{n}+3)$	Fixed at K0		Use prohibited
RWr $(\mathrm{n}+4)$	K-800000~K+800000		Axis 1 coordinate
$\mathrm{RWr}(\mathrm{n}+5)$			
RWr $(\mathrm{n}+6)$	K-800000~K+800000		Axis 2 coordinate
$\mathrm{RWr}(\mathrm{n}+7)$			
RWr(n+8)	K-800000 ~K+800000		Axis 3 coordinate
$\mathrm{RWr}(\mathrm{n}+9)$			
RWr $(\mathrm{n}+\mathrm{A})$	K-800000~K+800000		Axis 4 coordinate
$\mathrm{RWr}(\mathrm{n}+\mathrm{B})$			
RW ($\mathrm{n}+\mathrm{C}$)	00_{H}	**	Status 0 (*2)
RWr $(\mathrm{n}+\mathrm{D})$	00_{H}	${ }^{* *} \mathrm{H}$	Status 1 (*2)
RWr $(\mathrm{n}+\mathrm{E})$	00_{H}	${ }^{* *} \mathrm{H}$	Status 2 (*2)
$\mathrm{RWr}(\mathrm{n}+\mathrm{F})$	00_{H}	${ }^{*} \mathrm{H}$	Status 3 (*2)

$?$ - Coordinate data length: 32 bits

- Coordinate units: 0.01 mm (Example: $+100.00 \mathrm{~mm} \rightarrow \mathrm{~K}+10000$)
- The current coordinates for four axes are stored regardless of task combination [K15].
*1: The same value as the data selection check output signal $R X(n+6) C$ to $R X(n+6) F$ is stored.
*2: The status values are stored at low byte.
High bytes are always fixed at 00 .
Refer to section 11.3.3.3(1) for the status description.
(3) Counter monitor

The counter monitor can be operated in two modes: arbitrary selection mode for monitoring arbitrary seven counters; and designated subsequent number mode for monitoring 14 coupled counters. Either of two modes can be selected using the data selection auxiliary register RWwn.
(1) Arbitrary selection mode (RWwn $=0000 \mathrm{H})$ Monitoring up to seven arbitrary counters set to $\mathrm{RWw}(\mathrm{n}+2,4,6,8, \mathrm{~A}, \mathrm{C}, \mathrm{E})$

Monitor (CC-Link master station \rightarrow CA20-M10-CC)				Response (CC-Link master station \leftarrow CA20-M10-CC)			
Remote register	b15------b8	b7------b0	Remarks	Remote register	b15------b8	b7------b0	Remarks
RWwn	00_{H}	00_{H}	Mode selection	RWrn	00_{H}	03_{H}	Arbitrary selection mode ${ }^{*}$
RWw(n+1)	Fixed at K0		Use prohibited	$\operatorname{RWr}(\mathrm{n}+1)$	Fixed at K0		Use prohibited
RWw(n+2)	K1-K99*2		Counter number 1	RWr(n+2)	K1-K99		Counter number 1
RWw(n+3)	Fixed at K0		Use prohibited	RWr(n+3)	K0-K9999		Value of counter number 1
RWw(n+4)	K1-K99* ${ }^{\text {2 }}$		Counter number 2	RWr(n+4)	K1-K99		Counter number 2
RWw(n+5)	Fixed at K0		Use prohibited	RWr(n+5)	K0-		Value of counter number 2
RWw(n+6)	K1-K99*2		Counter number 3	RWr(n+6)			Counter number 3
RWw(n+7)	Fixed at K0		Use prohibited	RWr(n+7)	K0-K		Value of counter number 3
RWw(n+8)	K1-K99*2		Counter number 4	RWr(n+8)			Counter number 4
RWw(n+9)	Fixed at K0		Use prohibited	RWr(n+9)	K0-K		Value of counter number 4
$R W w(n+A)$	K1-K99*2		Counter number 5	$\mathrm{RWr}(\mathrm{n}+\mathrm{A})$			Counter number 5
RWw $(\mathrm{n}+\mathrm{B})$	Fixed at K0		Use prohibited	RWr(n+B)	K0-K		Value of counter number 5
RWw(n+C)	K1-K99* ${ }^{\text {2 }}$		Counter number 6	$\mathrm{RWr}(\mathrm{n}+\mathrm{C})$			Counter number 6
RWw(n+D)	Fixed at K0		Use prohibited	RWr(n+D)	K0-K		Value of counter number 6
RWw(n+E)	K1-K99* ${ }^{\text {2 }}$		Counter number 7	RWr(n+E)			Counter number 7
RWw(n+F)	Fixed at K0		Use prohibited	RWr(n+F)	K0-		Value of counter number 7

*1: The same value as the data selection check output signal $R X(n+6) C$ to $R X(n+6) F$ is stored. " 00 H " is stored at high byte.
*2:In the case where a number other than "K1 to K99" is designated for counter number, 0 will be returned to that counter number.

Designated subsequent mode ($\mathrm{RWwn}=0001 \mathrm{H}$)
Monitoring subsequent counters (up to 14) starting with the counter number set to RWw($n+1$).

Monitor (CC-Link master station \rightarrow CA20-M10-CC)				Response (CC-Link master station \leftarrow CA20-M10-CC)			
Remote register	b15------b8	b7------b0	Remarks	Remote register	b15------b8	b7------b0	Remarks
RWwn	00_{H}	$01_{\text {H }}$	Mode selection	RWrn	01H	03_{H}	Arbitrary selection mode *1
RWw(n+1)	K1-K99※2		First counter number	$\operatorname{RWr}(\mathrm{n}+1)$	K1-K99		First counter number
RWw(n+2)	Fixed at 0		Use porhibited	RWr(n+2)	K0-K9999		Value of first counter
RWw(n+3)			RWr(n+3)	K0-K9999		Value of first counter +1	
RWw(n+4)			RWr(n+4)	K0-K9999		Value of first counter +2	
RWw(n+5)			RWr $(\mathrm{n}+5)$	K0-K9999		Value of first counter +3	
RWw(n+6)			RWr(n+6)	K0-K9999		Value of first counter +4	
RWw(n+7)			$\mathrm{RWr}(\mathrm{n}+7)$	K0-K9999		Value of first counter +5	
RWw(n+8)			RWr(n+8)	K0-K9999		Value of first counter +6	
RWw(n+9)			$\operatorname{RWr}(\mathrm{n}+9)$	K0-K9999		Value of first counter +7	
$R W w(n+A)$			$\mathrm{RWr}(\mathrm{n}+\mathrm{A})$	K0-K9999		Value of first counter +8	
RWw $(\mathrm{n}+\mathrm{B})$			$\mathrm{RWr}(\mathrm{n}+\mathrm{B})$	K0-K9999		Value of first counter +9	
$\mathrm{RWw}(\mathrm{n}+\mathrm{C})$			$\mathrm{RWr}(\mathrm{n}+\mathrm{C})$	K0-K9999		Value of first counter +10	
RWw $\mathrm{n}+\mathrm{D}$)			RWr $(\mathrm{n}+\mathrm{D})$	K0-K9999		Value of first counter +11	
RWw(n+E)			$\mathrm{RWr}(\mathrm{n}+\mathrm{E})$	K0-K9999		Value of first counter +12	
RWw $(\mathrm{n}+\mathrm{F})$			$\mathrm{RWr}(\mathrm{n}+\mathrm{F})$	K0-K9999		Value of first counter +13	

?
*1: The same value as the data selection check output signal $R X(n+6) C$ to $R X(n+6) F$ is stored at low byte of RWwn. " 01 H " is stored at high byte.
*2:In the case where a number other than "K1 to K99" is designated for counter number, 0 will be returned to that counter number. In the case where a number above K87 is designated for the first counter number, 0 will be returned to the values after counter number 99.
(4) Torque monitor

The counter monitor can be operated in two modes: arbitrary selection mode for monitoring arbitrary seven counters; and designated subsequent number mode for monitoring 14 coupled counters. Either of two modes can be selected using the data selection auxiliary register RWwn.
(1) Arbitrary selection mode (RWwn $=0000 \mathrm{H}$)

Monitoring up to seven arbitrary counters set to RWw(n+2, 4, 6, 8, A, C, E)

Monitor (CC-Link master station \rightarrow CA20-M10-CC)				Response (CC-Link master station \leftarrow CA20-M10-CC)			
Remote register	b15------b8	b7------b0	Remarks	Remote register	b15------b8	b7------b0	Remarks
RWwn	00_{H}	00^{H}	Mode selection	RWrn	00_{H}	03_{H}	Arbitrary selection mode ${ }^{*}$
RWw(n+1)	Fixed at K0		Use prohibited	$\operatorname{RWr}(\mathrm{n}+1)$	Fixed at K0		Use prohibited
RWw(n+2)	K1-K99 ${ }^{\text {2 }}$		Counter number 1	RWr(n+2)	K1-K99		Counter number 1
RWw(n+3)	Fixed at K0		Use prohibited	RWr(n+3)	K0-K		Value of counter number 1
RWw(n+4)	K1-K99*2		Counter number 2	RWr(n+4)			Counter number 2
RWw(n+5)	Fixed at K0		Use prohibited	RWr(n+5)	K0-K		Value of counter number 2
RWw(n+6)	K1-K99*2		Counter number 3	$\mathrm{RWr}(\mathrm{n}+6)$			Counter number 3
RWw(n+7)	Fixed at K0		Use prohibited	$\mathrm{RWr}(\mathrm{n}+7)$	K0-K		Value of counter number 3
RWw(n+8)	K1-K99*2		Counter number 4	RWr(n+8)			Counter number 4
RWw(n+9)	Fixed at K0		Use prohibited	RWr(n+9)	K0-K		Value of counter number 4
RWw $(\mathrm{n}+\mathrm{A})$	K1-K99*2		Counter number 5	$\mathrm{RWr}(\mathrm{n}+\mathrm{A})$			Counter number 5
RWw $(\mathrm{n}+\mathrm{B})$	Fixed at K0		Use prohibited	RWr(n+B)	K0-K		Value of counter number 5
RWw(n+C)	K1-K99*2		Counter number 6	$\mathrm{RWr}(\mathrm{n}+\mathrm{C})$			Counter number 6
RWw(n+D)	Fixed at K0		Use prohibited	RWr $(\mathrm{n}+\mathrm{D})$	K0-K		Value of counter number 6
RWw(n+E)	K1-K99*2		Counter number 7	$\mathrm{RWr}(\mathrm{n}+\mathrm{E})$			Counter number 7
RWw(n+F)	Fixed at K0		Use prohibited	$\mathrm{RWr}(\mathrm{n}+\mathrm{F})$	K0-K		Value of counter number 7

- Data length of torque value: 32 bits
- Unit of torque value: 0.01 [T] (Ex.: +2.00[T] $\rightarrow \mathrm{K}+200$)
- T: Rating torque
- It is impossible to monitor axis 2 to axis 4.
*1: The same value as the data selection check output signal $R X(n+6) C$ to $R X(n+6) F$ is stored.
*2: The status values are stored at low byte.
High bytes are always fixed at 00 .
Refer to section 11.3.3.3(1) for the status description.

■11.4 Speed control mode through CC-Link

■ 11.4.1 Overview

This controller is operable in the speed control mode when instructed via the CC-Link. This mode can be used for applications that features continued unidirectional rotation, such as the drive source of a belt-driven device.
\triangle CAUTION The speed control mode is not subject to the software limit. Therefore, do not set the speed control mode for mechanisms whose operating range is limited. Doing so can cause damage to the machines and workpieces or personal injury.

■11.4.2 Speed control specifications

Speed control specifications

Controller type	CA20-M10 / M40
Software version	2.88 h or higher
Number of control axes	1 (*1)
Speed specification range	-3000 to $+3000[\mathrm{rpm}]$ (Specified with RWwn)
Acceleration/dece- leration time	20 steps (variable)

*1: Speed control cannot be performed through slave units. To use the speed control mode with multiple motors, control all the motors through the master unit.

■ 11.4.3 Items prohibited

Do not perform any of the following operations/settings when the speed control mode is active:

- Operations performed by the teach pendant
- Return to origin
- Start operation
- Jog operation
- Servo locking
- Change to any of the following modes
- Point mode
- Easy mode
-Pulse train mode
-Palletizing mode

11.4.4 Settings of speed control mode

(1) CC-Link setting

To activate the speed control mode, set " 9 " as the ones digit of the option value.
Turn off the power once after changing the value.

```
[PARA]M20
```

 CC STATION : 01
 -Link BAUDRATE:156K
 OPTION : 0009
 (2) Setting of motor rotation direction

When a positive target speed is given, specify the rotation direction with the motor output shaft viewed from the load side. Turn off the power once after changing the value.

```
[PARA]K05 A0=1
ROTATION A1=1
DIRECTION A2=1
    A3=1
```

Setting value	Rotation direction
0	Counterclockwise (CCW)
1	Clockwise (CW)

(3) Encoder type setting

Set the incremental encoder type "i". If the absolute encoder type "a" is left unchanged, an encoder backup error occurs each time the power is turned on. Turn off the power once after changing the value.

[i]

■ 11.4.5 List of I/O signals

If the speed control mode is set, the I/O signals are changed as shown in the following table:

Signal direction: CC-Link master station \leftarrow CA20-M10-CC		Signal direction: CC-Link master station \rightarrow CA20-M10-CC	
Device No. (Input)	Signal name	Device No. (Output)	Signal name
RXn0	Running output	RYn0	Rotation command input
RXn1	Error output	RYn1	Servo-on input
RXn2	Target speed achievement output Use prohibited	RYn2	Use prohibited
RXn3	RYn3	Reset input	
RXn4~RXn7	Target speed validation output	$R Y n 4 \sim R Y n 7$	Target speed validation input
$R X n 8 \sim R X n F$	Acceleration/deceleration table number selection output	$R Y n 8 \sim R Y n F$	Acceleration/deceleration table number selection input
$R X(n+1) 0 \sim R X(n+7) \mathrm{F}$	Use prohibited	$R Y(n+1) 0 \sim R Y(n+7) F$	Use prohibited

? $\quad \mathrm{n}$: Address assigned to the master unit by setting the station number
Inputs and outputs in the signal names: Directions when viewed from the CA20-M10-CC

- "Use prohibited" bits: Always set these bits to 0.

11.4.6 List of I/O data

If the speed control mode is set, the I/O data is changed as shown in the following table:

Output (CC-Link master station \rightarrow CA20-M10-CC)				Input (CC-Link master station \leftarrow CA20-M10-CC)			
Remote register	b15------b8	b7-----b0	Remarks	Remote register	b15------b8	b7------b0	Remarks
RWwn	K-3000 to K+3000		Target speed	RWrn	Current speed		Unit: [rpm]
RWw $(\mathrm{n}+1)$	K0 fixed		Use prohibited	RWr($\mathrm{n}+1$)	K0 fixed		Unused
RWw($\mathrm{n}+2$)			$\mathrm{RWr}(\mathrm{n}+2)$				
RWw($\mathrm{n}+3$)			RWr($\mathrm{n}+3$)				
$R W w(n+4)$			RWr ($\mathrm{n}+4$)	00H	** ${ }^{\text {, }}$	Status 0 (*1)	
RWw($\mathrm{n}+5$)			RWr($\mathrm{n}+5$)	00H	${ }^{* *}{ }^{*}$	Status 1 (*1)	
RWw ${ }^{\text {(}+ \text { +6) }}$			RWr($\mathrm{n}+6$)	00H	** H	Status 2 (*1)	
RWw $(\mathrm{n}+7)$			RWr $(\mathrm{n}+7)$	00 H	** H	Status 3 (*1)	
$\begin{aligned} & \mathrm{RWw}(\mathrm{n}+8) \\ & \sim \\ & \mathrm{RWw}(\mathrm{n}+\mathrm{F}) \end{aligned}$			$\begin{aligned} & \underset{\sim}{\operatorname{RWr}(\mathrm{n}+8)} \\ & \underset{\operatorname{RWr}(\mathrm{n}+\mathrm{F})}{ } \end{aligned}$	K0 fix		Unused	

?

- Target speed unit: 1 [rpm] (Example: +1000 [rpm] $\rightarrow \mathrm{K}+1000$)
- Current speed: Speed at which the motor is running. The units of current speed and target speed are the same.
*1: The status value is stored in the low-order byte. The high-order byte is always set to 00.
For the details of each status, refer to (1) of section 11.3.3.3.
- The target speed (RWwn) value can be changed while the motor is running. For example, when the target speed (RWwn) is changed from $K+1,500$ to $K+3,000$, the motor speed changes from 1,500 [rpm] to 3,000 [rpm].
- To change the sign of the target speed (RWwn) value (i.e., to reverse the rotation direction of the motor), set the target speed (RWwn) to K+0, and change the sign of the value after the motor has stopped (with running output (RXn0) OFF). The motor is stopped if the sign of the target speed value is changed without this procedure being performed. To recover the motor, turn OFF the rotation command input (RYnO), and then turn it ON.

11.4.7 Details of I/O signals

(1) Rotation command input (RYn0), running output (RXn0), and target speed achievement output (RXn2)

- When the rotation command input (RYn0) is turned ON, the motor starts running; when it is turned OFF, the motor stops.
- The rotation command input (RYn0) is not accepted in the following cases:
- Servo-on input (RYn1) is OFF.
- Error output (RXn1) is ON.
- Not all the target speed validation inputs (RYn4 to RYn7) are set to 1's.
- The robot is being operated with the teach pendant (T/P).
$\rightarrow \mathrm{T} / \mathrm{P}$ is ON with the teach pendant connected.
-The robot is being operated with the personal computer software.
\rightarrow The execution screen of the personal computer software is open.
- Turn ON the rotation command input (RYnO) one second or more after the servo-on input (RYn1) is turned ON.
If the time interval is too short, the motor will not start running. If the motor does not start, turn OFF the rotation command input (RYn0), and turn it ON one second or more after the servo-on input is turned ON.
- If the error output (RXn1) is turned ON, turn OFF both the rotation command input (RYn0) and the servo-on input (RYn1).
- The running output (RXnO) is ON during motor rotation.
- The target speed achievement output (RXn2) is ON while the motor speed is maintained at the target speed (RWwn).
This output is based on the speed command value in the controller, and the actual motor speed is not reflected in the output. Thus, use the output as a rough standard. If the information of actual motor speed is necessary, refer to the current speed (RWrn).

(1) Before turning ON the rotation command input (RYnO), confirm that:
- one second or more has passed after turning ON the servo-on input (RYn1),
- the four bits of target speed validation inputs (RYn4 to RYn7) are all ON, and
- the error output (RXn 1) is OFF.
(2) When the rotation command input (RYnO) is turned ON , the motor starts running.
(3) When the motor starts running, the running output (RXnO) is turned ON.
(4) When the target speed (RWwn) is achieved, the target speed achievement output (RXn 2) is turned ON.
(5) When the rotation command input (RYnO) is turned OFF, the motor starts deceleration.
(6) When the motor starts deceleration, the target speed achievement output (RXn2) is turned OFF.
(7) When the motor has stopped, the running output (RXnO) is turned OFF.

(2) Servo-on input (RYn1)

- This signal gets the motor to enter the servo-on state. When the signal is turned ON, the servo is turned on; when it is turned OFF, the servo is turned off.
The signal is valid when the error output ($R X n 1$) is OFF.
- The servo-on input (RYn1) is not accepted in any of the following cases:
- Error output (RXn 1) is ON.
- The robot is being operated with the teach pendant (T/P).
$\rightarrow \mathrm{T} / \mathrm{P}$ is ON with the teach pendant connected.
-The robot is being operated with the personal computer software.
\rightarrow The execution screen of the personal computer software is open.
- If the error output ($R X n 1$) is turned ON, turn OFF the servo-on input (RYn1).
- Do not turn OFF the servo-on input (RYn1) when the running output (RXn 0) is ON .
(Except when the error output (RXn1) is turned ON)
If the servo-on input (RYn1) is turned OFF during motor rotation, the motor enters the servo-off state, and runs through inertia until it stops.

(1) Turn ON the servo-on input at least two seconds after turning ON the power.
(2) Before turning ON the servo-on input (RYn1), confirm that the error output (RXn 1) is OFF.
If the error output (RXn 1) is ON, eliminate the cause of the error, and then reset the error state.
(3) When the error output (RXn1) is turned ON, turn OFF the servo-on input (RYn1).

(4) Do not turn OFF the servo-on input (RYn1) when the running output (RXn0) is ON. (The motor enters the servo-off state, and runs through inertia until it stops.)
(5) Even when the running output (RXnO) is ON, turn OFF the servo-on input (RYn1) if the error output ($R X n 1$) is turned ON .
(3) Reset input (RYn3)
- This signal resets the error state.

(1) After the error output (RXn1) is turned OFF, change the reset input (RYn3) back to OFF.
Alternatively, turn it OFF 30 msec or more after the reset input ($R Y n 3$) is turned ON. Note that if the cause of the error is not eliminated, the error output ($R X n 1$) is not turned OFF.
(4) Target speed validation inputs (RYn4-RYn7), and target speed validation outputs (RXn4-RXn7)
- Target speed validation inputs (RYn4-RYn7) are interlock signals to prevent the motor from accidentally running.
- When all the target speed validation inputs (RYn4-RYn7) are set to 1 's, the target speed (RWwn) value becomes valid. If any of the bits is not set to 1 , the target speed (RWwn) value becomes invalid and the motor does not run.
- For target speed validation outputs (RXn4-RXn7), the values of target speed validation inputs (RYn4-RYn7) are output without being changed.
(5) Acceleration/deceleration table number selection inputs (RYn8-RYnF), and acceleration/deceleration table number selection outputs (RXn8-RXnF)
- Specify an acceleration/deceleration table number (1-20) with acceleration/deceleration table number selection input (RYn8-RYnF).
- The acceleration/deceleration table value turns out to be motor acceleration/deceleration time (unit: seconds). This value can be changed with the acceleration/deceleration table in the parameter.
- Acceleration/deceleration time is a period of time until the motor speed reaches 0-3000 rpm.
- If the target speed (RWwn) is lower than 3000 rpm , time for reaching the target speed (RWwn) is shorter than the acceleration/deceleration time.
- For acceleration/deceleration table number selection outputs (RXn8-RXnF), the values of acceleration/deceleration table number selection inputs (RYn8-RYnF) are output without being changed.

		Bit Patterns							
		RYnF	RYnE	RYnD	RYnC	RYnB	RYnA	RYn9	RYn8
Acceleration/deceleration table numbers to be specified	1	0	0	0	0	0	0	0	1
	2	0	0	0	0	0	0	1	0
	.								
	10	0	0	0	0	1	0	1	0
	.								
	19	0	0	0	1	0	0	1	1
	20	0	0	0	1	0	1	0	0

0

- The table number 20 is selected when the bit pattern is not any of those in the above table.

(6) Error output (RXn1)

- This signal is turned ON if a controller error occurs.
- When the error output (RXn1) is turned ON, turn OFF both the rotation command input ($\mathrm{RYn0}$) and the servo-on input (RYn1).

■11.5 Selection table extension in external point designation mode

11.5.1 Overview

Use of the CC-Link enables the selection of all speed tables and acceleration/deceleration tables. If this function is used, set selection table extension in [PARA]M20 of mode settings (refer to section 13.2.20). When the setting is made, the assignment of input signals is equivalent to that of our highly functional master unit.
This section explains parameter setting methods and input-signal assignment. For operation methods, refer to chapter 8.
This function is available with controllers of the software version 2.88 k or higher.

	Extension input/ output not used	Extension input/ output used	Selection table extension mode	
	Number of tables	Input ports		
Point table	Up to 4 bits (Up to 16 tables)	10 bits $(999$ tables)	10 bits $(999$ tables)	Station No. 0 General input ports 01-1 to 02-2
Speed table	1 table	2 bits $(3$ tables)	Up to 4 bits (Up to 10 tables)	Specification permitted $* 1$
Acceleration/ deceleration table	1 table	1 bit $(2$ tables $)$	5 bits $(20$ tables)	Station No. 0 General input ports 02-3 to 02-7
Coordinate system	Absolute coordinates fixed	1 bit Absolute/relative coordinates	1 bit Absolute/relative coordinates	Specification permitted *2

*1: Specify the value in the "program selection input bit specification" ([PARA]M05) of mode settings. (Refer to section 13.2.5.)
*2: Specify the value in the "palletizing input bit specification" ([PARA]M16) of mode settings. (Refer to section 13.2.16.)

■ 11.5.2 How to set selection table extension

To activate the selection table extension mode, set " 8 " as the ones digit of the option value of [PARA]M20.
Turn off the power once after changing the value.

```
[PARA]M20
    CC STATION : 01
    -Link BAUDRATE:156K
    OPTION :0008
```

- The above setting supersedes the setting of "extension input/output in external point specification mode: valid/invalid" ([PARA]M17).

11.5.3 Assignment of input signals and tables

(1) How to specify coordinate (point) tables

Specify point tables with ten bits of the general input ports 01-1 to 01-8, 02-1, and 02-2 of the station No. 0 (master unit). (999 points)

Table to be specified	General input port numbers of the station No. 0											
	$02-2$	$02-1$	$01-8$	$01-7$	$01-6$	$01-5$	$01-4$	$01-3$	$01-2$	$01-1$		
	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}		
001	0	0	0	0	0	0	0	0	0	0		
002	0	0	0	0	0	0	0	0	0	1		
003	0	0	0	0	0	0	0	0	1	0		
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$		
008	0	0	0	0	0	0	0	1	1	1		
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$		
016	0	0	0	0	0	0	1	1	1	1		
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$		
256	0	0	1	1	1	1	1	1	1	1		
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$		
999	1	1	1	1	1	0	0	1	1	0		

1:ON 0:OFF

- An error occurs if 1000 or more point tables are specified.
- Relationship between point table numbers and input ports: The input port values are assumed as binary numbers while arranged in order of $2^{9,} 2^{8} \cdots 2^{1}, 2^{0}$, and the result of adding 1 to the value becomes the table number.
<Example> With the table number 16 :

$$
\begin{aligned}
16 & =\left(2^{9} \times 0+2^{8} \times 0+2^{7} \times 0+2^{6} \times 0+2^{5} \times 0+2^{4} \times 0+2^{3} \times 1+2^{2} \times 1+2^{1} \times 1+2^{0} \times 1\right)+1 \\
& =(8+4+2+1)+1
\end{aligned}
$$

(2) How to specify speed tables

Specify general input ports in M05 "program selection input bit specification" of mode settings.
Ten tables can be selected with up to four bits, but the number of selection bits varies depending on the assigned bit position. (Consecutive bits in specified ports become valid.)
<Example> If the leading bit is specified for the port 02-7 of the extension I/O unit of slave units, the specification results in the two bits of 02-7 and 02-8.
If the leading bit is specified for the port 03-1 of the station No. 0 (master unit), the specification results are as shown in the following table:

Table to be specified	General input port numbers			
	$03-4$	$03-3$	$03-2$	$03-1$
	2^{3}	2^{2}	2^{1}	2^{0}
01	0	0	0	1
02	0	0	1	0
03	0	0	1	1
04	0	1	0	0
05	0	1	0	1
06	0	1	1	0
07	0	1	1	1
08	1	0	0	0
09	1	0	0	1
10	1	0	1	0
$1:$ ON				

NOTE The default speed table (01) is specified in the following cases:
(1) General input ports cannot be assigned in M05 "program selection input bit specification" of mode settings, or the specified bits are all 0's (OFF) even when ports are assigned.
(2) Eleven or more tables are specified.
(3) How to specify acceleration/deceleration tables

Specify acceleration/deceleration tables with the five bits of the general input ports 02-3 to 02-7 of the station No. 0 (master unit). (20 tables)

Table to be specified	General input port numbers of the					
	$02-7$	$02-6$	$02-5$	$02-4$	$02-3$	
	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	
01	0	0	0	0	1	
02	0	0	0	1	0	
03	0	0	0	1	1	
04	0	0	1	0	0	
05	0	0	1	0	1	
06	0	0	1	1	0	
07	0	0	1	1	1	
08	0	1	0	0	0	
09	0	1	0	0	1	
10	0	1	0	1	0	

Table to be specified	General input port numbers of the station No. 0						
	$02-7$	$02-6$	$02-5$	$02-4$	$02-3$		
	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}		
11	0	1	0	1	1		
12	0	1	1	0	0		
13	0	1	1	0	1		
14	0	1	1	1	0		
15	0	1	1	1	1		
16	1	0	0	0	0		
17	1	0	0	0	1		
18	1	0	0	1	0		
19	1	0	0	1	1		
20	1	0	1	0	0		
0 $1:$ ON							$0:$ OFF

NOTE The default acceleration/deceleration table (05) is specified in the following cases:
(1) The five bits are all 0's (OFF).
(2) Twenty-one or more tables are specified.
(4) How to specify coordinate systems

Specify the general input port in M16 "palletizing input bit specification" of mode settings.
Specified bit
ON: Relative coordinate system
OFF: Absolute coordinate system
An absolute coordinate system is selected if no general input port is assigned in M16 "palletizing input bit specification" of mode settings.

- 11.6 Maximum torque limit function

11.6.1 Overview

This controller enables the limitation of the maximum torque when indicated via the CC-Link. This function can be used for clamping or inserting workpieces.

ACAUTION If the maximum torque limit is too low when used with a vertical axis, the current position cannot be retained, and a sudden drop can cause damage to the workpiece or the hand, or cause your hand to be caught in.

■ 11.6.2 Specifications for the maximum torque limit function

Specifications for the maximum torque limit function

Controller type	CA20-M10 / M40
Software version	2.88 w or higher
Number of control axes	1 (*1)
Available torque levels	4
Torque setting range	0.01 to 2.00 T (*2)
Operation with the maximum torque limit function excluded	Return to origin (*3)

*1 The maximum torque limit function cannot be used through slave units. To perform the maximum torque limit function with multiple axes, control all the axes through the master unit.
*2 T: Rated torque
*3 If a maximum torque limit is applied, return to origin might not be performed normally. Thus, the maximum torque limit function is disabled during return to origin.

■ 11.6.3 Setting of the maximum torque limit function

To enable the maximum torque limit function, set "7" as the ones digit of the option value of [PARA]M20. Turn off the power once after changing the value.

```
[PARA]M20
    CC STATION : 01
    -Link BAUDRATE:156K
        OPTION :0007
```


11.6.4 Setting of a maximum torque limit value

Use the setting value of an acceleration/deceleration table Nos. 17 to 20.

- For how to set an acceleration/deceleration table, refer to section 13.5.3.

For setting via the CC-Link, refer to (10) of section 11.3.2.3.

- Assuming the rated torque to be 1.00 , set n -fold torque to be the maximum torque.
- A torque value can be entered in a range of 0.01 to 9.99 T , but a value higher than 2.00 T is not output.
- Select a table number through table selection input. (Refer to (1) of section 11.6.5.)
- An acceleration/deceleration table value can be changed at arbitrary timing. The new value is reflected to the maximum torque of the motor immediately after the change. (For the change method, refer to (10) of section 11.3.2.3.)
- The initial values are as follows:

ACC table number	17	18	19	20
Maximum torque limit value $[\mathrm{T}]$	0.90	0.95	1.00	1.05

NOTE Set 2.00 for acceleration/deceleration tables which are not used.
The accuracy is not guaranteed, so use it as a rough standard.
As the maximum torque limit value is smaller, error increases due to an influence from the sliding resistance.

■11.6.5 Special I/O signals

If the maximum torque limit function is set, the following I/O signals are assigned as special I/O signals.

Signal direction: CC-Link master station \leftarrow C20-M10-CC			Signal direction: CC-Link master station \rightarrow C20-M10-CC	
Device No. (Input)	Signal name	Device No. (Output)	Signal name	
$R X(n+4) 0 \sim R X(n+4) 1$	Table confirmation output	RY $(n+4) 0 \sim R Y(n+4) 1$	Table selection input	

?

- n: Address assigned to the master unit by setting the station number
- Inputs and outputs in the signal names: Directions when viewed from the CA20-M10-CC
- No change to the I/O signals other than the above (Refer to section 11.2.1.)

(1) Table selection inputs [RY($n+4$)0 to $R Y(n+4) 1]$

- Select one of the acceleration/deceleration tables Nos. 17 to 20.
- Another table can be selected during movement.
- Table selection inputs are assigned to general input ports, so the status can be viewed through the sequential program.
- RY(n+4)0: General input port 8-1
- RY(n+4)1: General input port 8-2

Acceleration/deceleration table to be selected	Table selection input	
	$[\mathrm{RY}(\mathrm{n}+4) 1]$	$[\mathrm{RY}(\mathrm{n}+4) 0]$
17	0	0
18	0	1
19	1	0
20	1	1

(2) Table confirmation outputs [RX($\mathrm{n}+4$) 0 to $\mathrm{RX}(\mathrm{n}+4) 1]$

- Use the signals to confirm the acceleration/deceleration table number selected.
- For the table confirmation outputs, the values of table selection inputs $[R Y(n+4) 0$ to $R Y(n+4) 1]$ are output without being changed.

- Table confirmation outputs $[R X(n+4) 0$ to $R X(n+4) 1]$ are assigned to general output ports, so the values can be changed through the sequential program. However, note that they are overwritten with the values of table selection inputs $[R Y(n+4) 0$ to $R Y(n+4) 1]$ in a cyclic manner.
- RX(n+4)0: General input port 8-1
- RX($\mathrm{n}+4) 1$: General input port 8-2

11.7 CC-Link status

Activate the RUN mode, and press the HELP key. The screen on the left will appear.
Press the F4 key.

STEP 5

To display the STEP6 screen, press the NEXT key.

[CC-Link]	$1 / 2$
STATION $: 01$	
BAUDRATE:156K	
VERSION :01	

To return to STEP4, press the ESC key.

2

- If the CC-Link module is not connected, a hyphen (-) is displayed instead of the setting value.
- "STATION" indicates the currently set CC-Link station number.
- "BAUDRATE" indicates the currently set communication speed.
- "VERSION" indicates the version number of the LSI mounted on the CC-Link board.

[CC-Link]	$2 / 2$
ERR1:00	MST1:00
ERR2:00	MST2:00
ERR3:00	

STEP 6 To display the STEP5 screen, press the NEXT key. To return to STEP4, press the ESC key.

- If the CC-Link module is not connected, a hyphen (-) is displayed instead of the numeric value.
- ERR1: Error information 1

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
0	0	0	0	0	0	0	STERR

STERR: Station number setting error 0 : Normal 1: Error
(Zero, 62, or a greater value is set as a station number.)

- ERR2: Error information 2 (transmission status)

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
0	0	0	0	0	ERR22	ERR21	ERR20
ERR20:	CRC error			0: Normal	1: Error		
ERR21:	Time-out error						
ERR22:	Channel-0 carrier detection status	0: Normal	1: Error				
0: Normal	1: CRC Error						

- ERR3: Error information 3 (number of received-data items)

BIT7	BIT6	BIT5	BIT4	BIT3		BIT2	BIT1
0	0	0	0	0	ERR32	ERR31	ERR30

ERR30: RY or RWw data count error

ERR31: RY data count error

ERR32: RWw data count error

0: Normal
1: Less than the local station data count
0: Normal
1: Less than the local station data count
0: Normal
1: Less than the local station data count

- MST1: Status information 1

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
MST17	MST16	MST15	MST14	MST13	MST12	MST11	MST10
MST10: Sequencer CPU					0: STOP 1: RUN		
MST11: Sequencer CPU					0: Normal		Abnormal
MST12: Refresh					0: Stop		Start
MST13: Transient					0 : No		Yes
MST14: Transient receiving					0: Permitted		Not permitted
MST15: Transfer					0: Permitted		Not permitted
MST16: Transfer to the master station					0 : No 1		Yes
MST17: Master station					0 : Current master station		
					1: Sta	by mas	station

- MST2: Status information 2

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
MST27	MST26	MST25	MST24	MST23	MST22	MST21	MST20

MST23	MST22	MST21	MST20	RY data transmission points
0	0	0	0	0 points
0	0	0	1	256 points (32 bytes)
0	0	1	0	512 points (64 bytes)
0	0	1	1	768 points (96 bytes)
0	1	0	0	1024 points (128 bytes)
0	1	0	1	1280 points (160 bytes)
0	1	1	0	1536 points (192 bytes)
0	1	1	1	1792 points (224 bytes)
1	0	0	0	2048 points (256 bytes)

MST27	MST26	MST25	MST24	RWw data transmission points
0	0	0	0	0 points
0	0	0	1	32 points (64 bytes)
0	0	1	0	64 points (128 bytes)
0	0	1	1	96 points (192 bytes)
0	1	0	0	128 points (256 bytes)
0	1	0	1	160 points (320 bytes)
0	1	1	0	192 points (384 bytes)
0	1	1	1	224 points (448 bytes)
1	0	0	0	256 points (512 bytes)

This page is blank.

Chapter 12 DeviceNet

■ 12.1 DeviceNet Function

This controller enables adding of a DeviceNet function by a DeviceNet module. This chapter describes the DeviceNet interface.

DeviceNet is a field network interface that features a minimized wiring design in a low-cost structure and high-speed data communication. The DeviceNet interface allows data communication for various input/output and jog operation.

■ 12.1.1 Overview

This controller can be handled as a DeviceNet slave station for enabling I/O data communication. For details of the DeviceNet system specifications and various limitations, refer to the document published by ODVA (Open DeviceNet Vendor Association, Inc.) or the document supplied with the master station unit of the DeviceNet system.

- 12.1.2 DeviceNet specifications

Item	Specification		
Communication protocol	Compliant with DeviceNet		
Support connection	I/O connection (polling)		
Communication speed	125k / 250k / 500kbps (Set by parameter)		
Station number setting	$0-63$ (Set by parameter)		
Cable lengths	Baud rate	Thick cable	Thin cable
	125k	500 m	100m
	250k	250 m	
	500k	100 m	
Number of occupied points	Send: 128 points Receive: 128 points		
Number of input/output points	System input: 4 points, System output: 4 points		
	General-purpose input: 64 points, General-purpose output: 64 points		
	Jog input: 8 points, Jog output: 8 points		
Vendor ID	733		
Device type	0 (Generic Device)		
Product code	4 (CA20-M10-DN)		

*1: The input and output are based on the direction viewed from the robot controller.

■ 12.1.3 How to attach the DeviceNet module

■ 12.1.4 Explanation of DeviceNet component and external dimensions

$90(\mathrm{~W}) \times 160(\mathrm{H}) \times 134(\mathrm{D})$
(Not including the mounting bracket)
(1) DeviceNet status display LED

Name	Color	On/Off		Cause/Remedy
MS	Green	- On	Normal	Normal status
		Flashing	Unset status	An error has occurred in the setting value in the CA20-M10. Check the settings and restart. This can also indicate standby status. Check if the master unit has started normally.
	Red	- On	Critical fault	A hardware error has occurred (such as DPRAM, internal ROM, internal RAM, EEPROM, CAN error, or WDT error). Restart. If the error occurs again, replace the unit.
		Flashing	Minor fault	An error has occurred in the user settings, and a user-side interrupt timeout has occurred. Re-check the settings, and restart.
	Green/ Red	O Off	No power supply	The power is not supplied, or initialization is in progress. Check the power supply.
NS	Green	- On	Normal	One or more connections are established (running) in online status.
		Flashing	Connecti on wait	The master unit is not starting normally. (A configuration area has occurred in the master unit I/O area.) Check if the master unit has started normally.
	Red	- On	Critical commun ication error	A communication error has occurred (such as a duplicate node address, busoff detection, mismatched baud rate, etc.) Check the connection, noise, node address settings, baud rate settings, and other parameters, and then restart.
		Flashing	Minor commun ication error	Communication with the master unit has timed out. Check the master unit status, connection, noise, node address settings, baud rate settings, and other parameters, and then restart.
	Green/ Red	O Off	No power supply	Either there is no power supply, or there is a WDT error, baud rate check in progress, or duplicate node address check in progress. Check the power supply.

The LED turns on for 0.5 second and turns off for 0.5 second.
(2) DeviceNet connector

The exclusive DeviceNet cable for data linkage is connected to this connector.

Pin no.	Signal name	Symbol	Wire color
5	$\mathrm{~V}_{+}$	V_{+}	Red
4	CANH	CH	White
3	Shield	dr	Shield
2	CANL	CL	Blue
1	$\mathrm{~V}-$	$\mathrm{V}-$	Black

12.1.5 Connection of exclusive DeviceNet cable

The cable connection order is not related to the station number setting (MAC ID).
Be sure to always connect a terminator resistor (121 $\Omega, 1 \%$ metal coating, $1 / 4 \mathrm{~W}$) at both ends of the main line. Connect the terminator resistor between CANH and CANL.
A terminator resistor is not supplied with this controller.

For details on the cable connections, refer to the master station operating manual or document published by the ODVA.

■ 12.1.6 DeviceNet settings

(1) CA20-M10-DN settings

The station number (MAC ID) and baud rate are specified by [PARA] M21 in the mode setting. To enable a modified value, turn the power off and then on again. (Refer to section 13.2.21.)
(2) DeviceNet master station settings

Make the DeviceNet master station settings by following the master station operating manual.

12.2 Connection with External Devices

12.2.1 List of master unit I/O signals

Signal direction: DeviceNet master station \leftarrow CA20-M10-DN		Signal direction: DeviceNet master station \rightarrow CA20-M10-DN (*1)	
Input Device No. (Offset*2)	Signal name	Output Device No. (Offset*2)	Signal name
+0	Running" output	+0	Return to origin input
+1	Error output	+1	Start input
+2	Positioning finish output	+2	Stop input
+3	Return to origin finish output	+3	Reset input
$+4 \sim+7$	Use prohibited	+4~+7	Use prohibited
+8~+15	General output port 1-1 ~ 8	+8~+15	General input port 1-1 ~ 8
+16~+23	General output port 2-1 ~ 8	$+16 \sim+23$	General input port 2-1 ~ 8
+24~+31	General output port 3-1 ~ 8	+24~+31	General input port 3-1 ~ 8
+32~+39	General output port 4-1 ~ 8	+32~+39	General input port 4-1 ~ 8
+40~+47	General output port 5-1 ~ 8	+40~+47	General input port 5-1 ~ 8
+48~+55	General output port 6-1 ~ 8	+48~+55	General input port 6-1 ~ 8
+56~+63	General output port 7-1 ~ 8	+56~+63	General input port 7-1 ~ 8
$+64 \sim+71$	General output port 8-1 ~ 8	+64~+71	General input port 8-1 ~ 8
$+72 \sim+79$	Jog output (*3)	$+72 \sim+79$	Jog input (*3)
+80~+127	Reserved (*4)	+80~+127	Reserved (*4)

?
*1: If DeviceNet communication is cut off, the stop input is set to 1, and all others are cleared to 0 . However, during T/P operation, the stop input is also cleared to 0 .
*2: Offset amount from the start device (unit: bits)
*3: Refer to section 12.2.2 and 12.2.4.

- 4: Area reserved for future function expansion (Fix at 0.)

12.2.2 System I/O

(1) System input (DeviceNet master station \rightarrow CA20-M10-DN)

Signal name	Remote device (*1)	Normal mode	External point designation mode	Remarks
Return to origin	+0	ON: Start of return to origin operation.	Return to origin	Detection of leading edge
Start	+1	ON: Restart from currently stopped step or from feed hold state.	ON: Starts moving based on currently specified table information.	
Stop	+2	ON: Stops after current step has been executed.	Invalid	When this input is ON, return to origin and start input are invalid.
Reset	+3	ON : Cancels an error status. (Valid while program execution is stopped.)	ON: Cancels an error status.	
Jog input	$\begin{aligned} & +72 \\ & \sim \\ & +79 \end{aligned}$	A selected axis is moved by jogging after the motion mode (jog, low-speed or high-speed) and travel direction are specified.		Section 12.2.4

*1) Offset amount from the start device (unit: bits)
(2) System output (CA20-M10-DN \rightarrow DeviceNet master station)

Signal name	Remote device (*1)	Normal mode	External point designation mode	Ref.
Running	+0	ON during controller operation and during return to origin.	ON during robot operation.	Section 10.2.11
Error	+1	ON at error generation.	Same as left	Section 10.2.12
Positioni ng finish	+2	ON when the robot has been located at a predetermined position. OFF while the robot is moving. (Remains OFF when it is paused.)	Same as left	Section 10.2.13
Return to origin finish	+3	ON when return to origin is completed.	Same as left	Section 10.2.14
Jog output	\sim \sim ~ 72	Acceptance or rejection of jog, active status, etc. are displayed.	Section 12.2.4	

*1) Offset amount from the start device (unit: bits)

12.2.3 Name of general-purpose I/O port and teach pendant display

In the controller's system configuration, there are master unit, slave unit and expansion input/output unit input/output ports. The No. of points will change according to the use of options. These input/output ports are displayed on the Teach Pendant as shown below.

- For details on the port numbers and support for input devices and output devices, refer to section 12.2.1.

12.2.4 Jog input/output

(1)

List of jog input/output signals

Signal direction: DeviceNet master station \leftarrow CA20-M10-DN		Signal direction: DeviceNet master station \rightarrow CA20-M10-DN	
Input Device No. $($ Offset *1)	Signal name	Output Device No. (Offset *1)	Signal name
+72	Axis 1 "jogging" output	+72	Axis 1 "request jog" input
+73	Axis 2 "jogging" output	+73	Axis 2 "request jog" input
+74	Axis 3 "jogging" output	+74	Axis 3 "request jog" input
+75	Axis 4 "jogging" output	+75	Axis 4 "request jog" input
+76	Jog-ready output	+76	"Request inching" input
+77	Unused	+77	"Request low-speed jog" input
+78	Unused	+78	"Request high-speed jog" input
+79	Unused	+79	"Designate jog direction" input OFF: + direction ON: - direction

*1: Offset amount from the start device (unit: bits)

- When the jog conditions (inching request, low-speed jog request, high-speed jog request) and jog direction are specified, and the jog request is ON, the corresponding axis performs the jog operation. (Refer to Fig. 12.2.4-1.)
- Jogging by I/O signal is not accepted as long as the jog ready output signal is OFF. The jog ready output signal is OFF under the following conditions.
- While the robot is controlled through the teach pendant (T/P).
\rightarrow While the T/P is connected and turned on.
- While the robot is controlled by the personal computer software.
\rightarrow While the execution screen of the personal computer software is opened.
- While the "running" output is ON.
- While the error output is ON.
- When the multiple bits for the "request inching" input, "request low-speed jog" input and "request high-speed jog" input are ON, the motions are executed according to the following order.
Inching > Low-speed jog > High-speed jog
- It is not possible to simultaneously move two (2) or more axes at jogging. Move each axis separately.
- The axis stops if the communication through the DeviceNet has been severed during jogging.

Fig. 12.2.4-1 Example of First axis moving
(1) Make sure that the jog-ready signal is ON.
(2) Set the jog conditions. (In the above figure, low-speed jog and plus "+" direction are specified.)
(3) Turn on the "request axis 1 jog" input. (With this timing, the jog conditions are input.)
(4) The jog-ready output turns off and the "axis 1 jogging" output turns on. Then the axis 1 starts jogging at low speed in the plus "+" direction.
(5) To stop the axis, turn off the "request axis 1 jog" input signal.
(6) The jog-ready output turns on and the "axis 1 jogging" output turns off. Then the axis 1 jogging at low speed in the plus " + " direction stops.
(7) Make sure that the jog-ready signal is ON.
(8) Set the jog conditions. (In the above figure, high-speed jog and "-" direction are specified.)
(9) Turn on the "request axis 1 jog" input. (With this timing, the jog conditions are input.)
(10) The jog-ready output turns off and the "axis 1 jogging" output turns on. Then the axis 1 starts jogging at high speed in the minus "-" direction.
(11) Even if the jog conditions have been changed during travel, they are neglected.
(12) To stop the axis, turn off the "request axis 1 jog" input signal.
(13) The jog-ready output turns on and the "axis 1 jogging" output turns off. Then the axis 1 jogging at high speed in the minus "-" direction stops.

This page is blank.

Chapter 13 Parameter Setting

Various parameters can be set in the PRGM modes other than the palletizing mode. The parameters can be divided into the following four kinds.

- Mode setting ------ Designation of the bits for system input, and setting of the easy mode, external point designation mode and pulse train input mode, etc., can be carried out.
- Parameter 1------- Parameters whose settings will be changed frequently
- Parameter 2------- Parameters whose settings will be changed frequently
- Table

Tables of various points, speed and acceleration

■ 13.1 How to enter and leave the PARA mode

Press HELP in program mode. The following display appears. (Refer to section 4.1.1.)

STEP 2 Press F1 to enable mode setting. Press F2 to set parameter 1.
Press F3 to parameter 2.
Press F4 to enable table setting mode.
Press ESC to return to the program mode screen.

- 13.2 Method of mode setting

The mode should be set for the following items.
The power must be turned off and then on again after changing the value of 21 . Setting of DeviceNet. The power does not have to be turned off for other items.

1. Single operation mode input bit designation
2. Continuous start input bit designation
3. Escape input bit designation
4. Pause input bit designation
5. Program selection input bit designation
6. Return to origin input bit designation
7. Pausing output bit designation
8. Input wait output bit designation
9. Teach Pendant display language Japanese/English
10. OFF (Invalid), easy, point, pulse 1, pulse 2
11. Clear at general-purpose output reset Valid/Invalid
12. Status setting when continuous start is ON Hold/Clear
13. Status setting when continuous start is OFF Hold/Clear
14. Direct output designation
15. READY output bit designation
16. Palletizing input bit designation
17. Expansion I/O during point designation Valid/Invalid
18. Task positioning output designation
19. Task return to origin output designation
20. Setting of CC-Link
21. Setting of DeviceNet \qquad The power must be turned off and then on again
22. Designation of battery alarm output bit
23. Moving coordinate table number output in external point designation mode

Enter the PARA mode to set the mode. (Refer to section 13.1.)

STEP 1 When this display appears, press F1
[PARA] F1:SET MODE
F2:PARAMETER1
F3: PARAMETER2
F4: TABLE

STEP 2 Press NEXT or NEXT to move to the M01 to M23 mode setting screens.

- Search function

When (SEARCH) is pressed and the parameter No. 1 to 23 is input, the mode setting screen can be searched.

- Jump function

When F1 is pressed in M01 to M09, M10 appears, when F1 is pressed in M10 to M19, M20 appears and when F1 is pressed in M20 to M23, M01 appears.

- Bit designation screen

When designating a bit, 01-0 will display on the lower right of the screen. The meanings of the numbers are as follow.

Refer to section 10.1.4 for the names of the ports.

■ 13.2.1 Designation of single operation mode input bit

STEP 1 Use the numeric keypad to designate the input bit and press ENT. When NEXT is pressed, the next screen will display. Press ESC to return to the PARA mode screen.
?
When the single operation mode input bit is designated and operation is started with the designated bit turned ON, the robot single operation mode will be entered. (Refer to section 10.2.5.)

■ 13.2.2 Designation of continuous start input bit

Use the numeric keypad to designate the input bit and press ENT. When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press (ESC to return to the PARA mode screen.

When the continuous start input bit is designated and reset is input or the power is turned ON, the values (step No., counter value, etc.) in the controller's memory will be held according to the mode settings M12 and M13. (Refer to sections 10.2.6, 13.2.12 and 13.2.13.)

■ 13.2.3 Designation of escape input bit

Use the numeric keypad to designate the input bit and press ENT. When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press (ESC to return to the PARA mode screen.
?
If the escape input bit is designated and the MVE command is executed, the axis will decelerate and stop when the designated bit turns ON. It will be interpreted that the step has ended, and the next step will be executed. (Refer to section 10.2.7.)

■ 13.2.4 Designation of pause input bit

STEP 1 Use the numeric keypad to designate the input bit and press ENT. When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press (ESC to return to the PARA mode screen.
? If pause input bit is designated, the axis will decelerate and stop when the designated bit turns ON.

■ 13.2.5 Designation of program selection input bit

Use the numeric keypad to designate the input bit and press ENT. When NEXT is pressed, the next screen will display, and when -NExT is pressed, the previous screen will display. Press (ESC to return to the PARA mode screen.

- When the program selection input bit is designated and the PSEL command is executed, the program will be executed from the tag No. designated with the designated bit (continuous 3 bits). (Refer to section 10.2.9.)
In the easy or palletizing mode, the program No. designated with the designated bit will be executed.
- Continuous 3 bits

The bit designated with this mode setting is a 2^{0} bit. The 3 bits following the designated bit will be the program selection input.
<Example> When 01-1 is set
When 01-1 is designated, the setting will be as follows.
Port 01-1 \rightarrow Program selection input 2^{0}
Port 01-2 \rightarrow Program selection input $\left.2^{1}\right\}$ The program selection number will be 8 .
Port 01-3 \rightarrow Program selection input 2^{2})
NOTE - The continuous 3 bits cannot be set to bridge over ports.
<Example> When 01-3 is set.
When port $01-3$ is set, since port 01 is bit 1 to 4 , the setting will be as follows.
$\left.\begin{array}{l}\text { Port 01-3 } \rightarrow \text { Program selection input } 2^{0} \\ \text { Port 01-4 } \rightarrow \text { Program selection input } 2^{1}\end{array}\right\}$ The program selection number will be 4.

- This setting is also used as the point table designation input 2^{0} to 2^{2} or 2^{3} during the external point designation mode. (Refer to section 8.1.)
- If the pause input is not being used during the external point designation mode, set 01-1, and when using the pause input, set 01-2.

■ 13.2.6 Designation of return to origin input bit

STEP 1 Use the numeric keypad to designate the input bit and press ENT. When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to return to the PARA mode screen.
? - The initial value (port 01-5) of the return to origin input is decided, but it can be changed with this bit designation.
-When CC-link is used, this parameter is not available.

■ 13.2.7 Designation of pausing output bit

Use the numeric keypad to designate the output bit and press ENT. When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to return to the PARA mode screen.
? When the pausing output bit is designated, the designated bit will turn ON while operation is paused (temporarily stopped). (Refer to section 10.2.16.)

■ 13.2.8 Designation of input wait output bit

Use the numeric keypad to designate the output bit and press ENT. When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press (ESC to return to the PARA mode screen.
? When the input wait output bit is designated, the designated bit will remain ON while the program is waiting for the input of the IN command. (Refer to section 10.2.15.)

■ 13.2.9 Setting of Teach Pendant display (Japanese/English) mode

The display here refers to the display of the Teach Pendant screens.

■ 13.2.10 OFF (Invalid), easy, point, pulse 1, pulse 2

STEP 1 Select the operation mode with the ALT.
[PARA]M10 When the required mode is displayed, press OFF/EASY/POINT/PULSE ENT . When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to return to the PARA mode screen.
? When ALT is pressed, the mode will display in order as shown below.

- The relation of the display and mode is as follows.

OFF (Invalid)	Sequential mode or palletizing mode	Refer to Chapters 4 and 7
EASY	Easy mode	Refer to Chapter 6
POINT	External point designation mode	Refer to Chapter 8
PULSE1	Pulse train input mode (1-clock operation)	Refer to Chapter 9
PULSE2	Pulse train input mode (2-clock operation)	Refer to Chapter 9

■ 13.2.11 Setting of general-purpose output clear mode during emergency stop and reset

? When this mode setting is validated, all general-purpose outputs will be turned OFF

- When continuous start input is set, the continuous start setting will have a priority.

■ 13.2.12 Setting of state when continuous start is valid (Input ON)

STEP 1 Switch between Hold (H) and Clear (C) with ALT and then press ENT. When NEXT is pressed, the next screen will display, and when - - EXT is pressed, the previous screen will display. Press ESC to return to the PARA mode screen.

- The continuous start input bit is designated, and whether to hold or clear the step No., counter and general-purpose outputs when reset is input while the designated bit is ON is designated. (Refer to section 10.2.6.)
- The meanings of the characters on the screen are as follows. Item S: Step No. C: Counter O: General-purpose output
- The above screen is the initial setting screen. Use this for the initial settings.

■ 13.2.13 Setting of state when continuous start is valid (Input OFF)

- The continuous start input bit is designated, and whether to hold or clear the step No., counter and general-purpose outputs when reset is input while the designated bit is OFF is designated. (Refer to section 10.2.6.)
- The meanings of the characters on the screen are as follows. Item S: Step No. C: Counter O: General-purpose output
- The above screen is the initial setting screen. Use this for the initial settings.

■ 13.2.14 Setting of direct output bit

Use the numeric keypad to designate the output bit and press ENT. When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press (ESC to return to the PARA mode screen. pressing the function keys (F1 to F4) on the Teach Pendant. (Refer to section 16.1.) The general-purpose output bit assigned to each function key is set here.

■ 13.2.15 Designation of READY output bit

STEP 1

Use the numeric keypad to designate the output bit and press ENT. When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to return to the PARA mode screen.
?
When the READY output bit is designated, the designated output bit will turn OFF until the controller is ready for operation after the power is turned ON. The bit will turn ON when the controller is ready for operation. (Refer to section 10.2.17.)

■ 13.2.16 Designation of palletizing input bit

STEP 1 Use the numeric keypad to designate the output bit and press ENT. When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press (ESC to return to the PARA mode screen.
?
When the palletizing input bit is designated, the controller will enter the palletizing mode if start is input while the designated bit is ON. If start is input while the bit is OFF, the controller will enter the sequential mode. (Refer to section 10.2.10.)

■ 13.2.17 Expansion input/output during external point designation mode Valid/Invalid

$\left.\begin{array}{\|c\|c\|}\hline \text { [PARA]M17 } & \\ \text { EX. POINT DESIG. MODE } \\ \text { EXTENTION I } / 0 \\ {[O F F}\end{array}\right]$

STEP 1 Switch between Invalid/Valid with ALT and press ENT. When -NEXT is pressed, the previous screen will display. Press ESC to return to the PARA mode screen.

When using the controller to which the expansion input/output unit (option) is connected with the external point designation mode, if this bit is validated, the expansion input/output input bits will be used as the point table designation bits. (Refer to Chapter 8)
If this bit is validated, the designation of point table input bit (section 13.2.5) becomes invalid. The designation of each data bit is fixed. (Refer to section 8.1)

■ 13.2.18 Setting of task positioning output

Use the numeric keypad to designate the output bit and press ENT.
When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to return to the PARA mode screen. positioning of all axes is completed. The positioning completed output can be set for each task with this setting.

■ 13.2.19 Setting of task return to origin output

STEP 1 Use the numeric keypad to designate the output bit and press ENT.
When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to return to the PARA mode screen.
?
The return to origin completion output explained in section 10.2.14 will turn ON when all axes have return to the origin. The return to origin completed output can be set for each task with this setting.

■ 13.2.20 Setting of CC-Link

Use the numeric keypad to enter the station number, and press ENT.
Use ALT to select BAUD RATE, and press
STEP 3 Use the numeric keypad to enter the option flag value, and press ENT.
When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to return to the PARA mode screen.
? - The STATION option sets the CC-Link unit station number. This controller occupies the four consecutive stations from the station number that was set. Therefore, the valid range of setting values is 1 to 61 . The setting is invalid if the 0 station or 62 station or higher is set.
(Initial value: 0, Setting range: 0 to 99)
-The BAUD RATE option sets the CC-Link transmission speed. The settable transmission speed varies depending on the total cable length, CC-Link version, and cable types.
(Initial value: 156K, Selection range: 156K, 625K, 2.5M, 5M, 10M)
-When the thousands place of the option value is set to " 0 ", all system input and general-purpose input from CC-Link is enabled.
When "1" is set, system input and general-purpose input (ports 1 to 3) of the master unit is enabled from the input/output connectors.
(Initial value: 0000, Setting range: 0000 to 9999) (Refer to section 11.2.3.)

- The functions below are assigned to the ones place of the option value.

0 : Normal
7: Maximum torque limit function (Refer to section 11.6)
8: Selection table extension in external point designation mode (Refer to section 11.5)
9: Speed control mode (Refer to section 11.4)
The other functions are assigned to the ones, tens and thousands place of the option value. Change a value after understanding the contents of the applicable function well. When a value is changed carelessly, the robot may move unexpectedly and a machine or a workpiece may be damaged or someone may be injured.

■ 13.2.21 Setting of DeviceNet

STEP 1 Use the numeric keypad to enter the station number, and press ENT.
[PARA]M21
Device STATION : 01
Net BAUDRATE:125K OPTION : 0000

Use ALT to select BAUD RATE, and press ENT

STEP 3 Use the numeric keypad to enter the option flag value, and press ENT.
When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to return to the PARA mode screen.
?

- The power must be turned off and then on again after changing the value of this parameter.
-The STATION option sets the DeviceNet unit station number.
(Initial value: 0, Setting range: 0 to 99)
-The BAUD RATE option sets the DeviceNet transmission speed. The settable transmission speed varies depending on the total cable length and cable types.
(Initial value: 125K, Selection range: 125K, 250K, 500K)
- When the thousands place of the option value is set to " 0 ", all system input and general-purpose input from DeviceNet is enabled.
When " 1 " is set, system input and general-purpose input (ports 1 to 3) of the master unit is enabled from the input/output connectors.
(Initial value: 0000, Setting range: 0000 to 9999)

■ 13.2.22 Designation of battery alarm output bit

Use the numeric keypad to designate the output bit and press ENT. When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to return to the PARA mode screen.
?
When the battery voltage drops, the bit designated for battery alarm output is set to ON. (Refer to section 10.2.20.)

■ 13.2.23 Moving coordinate table number output in external point designation mode

STEP 1 This parameter is not available.
Press -NEXT to display the previous screen.
Press ESC to return to the PARA mode screen.

■13.3 Parameter 1 setting

Parameters must be set for the following items. For items marked with \leqslant, the most appropriate parameters are set automatically when the robot type is selected.
Refer to section 2.4.8 for details on selecting the robot type.
During the pulse train input mode, the items marked with $\mathbf{\Delta}$ will be effective.

1. Software limit value (upper limit)
2. Software limit value (lower limit)
3. Servo gain (position/speed)
4. Pass area data value \qquad (Disabled)
5. Origin offset value
6. Sequence of Return to Origin
7. JOG speed
8. JOG inching movement

NOTE Note that the parameter "4. Pass area data value" above cannot be used. Even if it is set, the parameter is ineffective.

Set PARA mode for setting parameter 1. (Refer to 13.1.)

STEP 2 Use NEXT and -NEXT to move to the P01 to P08 parameter 1 setting screen.
[PARA]P01A0 $=0000.00$
UPPER A1= 0000.00
LIMIT A2= 0000.00
$A 3=0000.00$

- Search function

When SEARCH is pressed and the parameter No. 1 to 8 is input, the parameter 1 setting screen can be searched.

- Jump function

When F1 is pressed in P01 to P08, M01 appears.

■ 13.3.1 Setting of software limit value (upper limit)

STEP 1 Use the numeric keypad to enter the coordinates and press ENT. When NEXT is pressed, the next screen will display. Press ESC to return to the PARA mode.
? The software limit upper value indicates the maximum value [mm] of the robot's movement range.
(Initial value: 0, setting range: -8000 to 8000)

■ 13.3.2 Setting of software limit value (lower limit)

? The software limit lower value indicates the minimum value [mm] of the robot's movement range.
(Initial value: 0, setting range: -8000 to 8000)

■ 13.3.3 Setting of servo gain (position/speed)

Use the numeric keypad to enter the servo gain (position) and press ENT .

Use the numeric keypad to enter the servo gain (speed) and press ENT. When NEXT is pressed, the next screen will display, and when - NEXT) is pressed, the previous screen will display.
Press ESC to return to the PARA mode.

- If the servo system position gain setting value is too small, the positioning time will increase, and if too large, hunting (vibration) will occur. (Setting range: 0 to 98)
- If the servo system speed gain setting value is too small, hunting (vibration) will increase, and if too large, a groaning sound will be heard. (Setting range: 0 to 98)
- 99 is for adjustment by the maker. Do not set the value.
- When the robot type is input, the optimum values for the servo gain (position, speed) are automatically set. However, these should be changed as required. Refer to the BA Instruction Manual (Axis Installation Section) for the setting values.

■ 13.3.4 Setting of pass area

STEP 1 This parameter cannot be used, so press NEXT
 and move to the next screen.
When -NEXT is pressed, the previous screen will display.
Press ESC to return to the PARA mode screen.

■ 13.3.5 Setting of origin offset value

Use the numeric keypad to enter coordinates of the origin offset value and press ENT. When (next is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display.
Press ESC to return to the PARA mode.

- The offset value is the distance [mm] to offset the origin when required. This is used to move all points in the program parallel in respect to the coordinate axis. After changing the origin offset, all points in the program will be moved in parallel by the offset value. The movement coordinates will also be offset when using the sequential, easy, palletizing or external point designation mode.
(Initial value: 0, setting range: -8000 to 8000)
- If the OFS command is used in the sequential mode, this offset value will be added. $[$ General offset value $]=\left[\begin{array}{c}\text { Offset value set in } \\ \text { parameter } 1\end{array}\right]+\left[\begin{array}{c}\text { Offset value set with } \\ \text { OFS command }\end{array}\right]$
- Always return to the origin after changing the origin offset. If the origin is not returned to, the origin offset will not be set.
[Example] When using a two-axis combination and the origin offset values X axis $=200$ and Y axis $=100$ are validated, the point $A(X=100, Y=100)$ in the program will be moved in parallel 200 in the X axis direction and 100 in the Y axis direction. This will change the point A^{\prime} position to $\mathrm{X}=300, \mathrm{Y}=200$.

- 13.3.6 Setting of sequence of return to origin

[PARA]P06

HOME SEQUENCE
A0 A1 A2 A3 [1] [1][1][1]

STEP 1 Use the numeric keypad to enter the sequence of return to origin (1 to 4) and press ENT. When NEXT is pressed, the next screen will display, and when - NEXT is pressed, the previous screen will display.
Press ESC to return to the PARA mode.

- The sequence of return to origin is the order that each axis of the robot returns to the origin. For example, if the sequence of return to origin for station No. 0 is set to " 1 " and the sequence of return to origin for station No. 1 is set to " 2 ", the axis controlled by the station No. 0 unit will return to the origin, and then the axis controlled by the station No. 1 unit will return to the origin. If both are set to "1", both axes will simultaneously return to the origin. (Initial value: 1, setting range: 1 to 4)
- During multitasking, the return to origin order will be effective for each task. For example, if the task and axis combination (refer to section 13.4.15) is [1][1][2][3] and set as $A 0=1, A 1=2, A 2=1, A 3=1$, the $A 0, A 2$ and $A 3$ axes will start return to origin simultaneously. The A1 axis will start return to origin after the A0 axis completes return to origin.

■ 13.3.7 Setting of JOG speed

Use the numeric keypad to enter the station No. (0 to 3) and press ENT.

Use the numeric key pad to enter the JOG speed (low speed) and press ENT.
Use the numeric key pad to enter the JOG speed (high speed) and press ENT.
When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display.
Press ESC to return to the PARA mode.
? -JOG speed refers to the speed [mm/s] for manual operation (JOG operation) using the movement keys $(-1,+1,-2,+2)$. (Refer to section 17.5.)
(Initial value: $L=10, H=50$, setting range: 0.1 to 999.9)

- When 0.1 to 0.9 is set, JOG speed become to be $1 \mathrm{~mm} / \mathrm{s}$.

■ 13.3.8 Setting of JOG inching movement

Use the numeric key pad to enter the JOG inching movement rate and press ENT.
When -NEXT is pressed, the previous screen will display. Press ESC to return to the initial screen.

- The JOG inching movement rate is the movement amount [mm] when the movement keys $(-1,+1,-2,+2)$ are pressed during JOG operation. (Initial value: 0.01, setting range: 0 to 65)
-When a small value is set for the axis whose the sixth column of robot type is 7 , it may not move according to the setting value. For example, when $0.01[\mathrm{~mm}]$ is set for JOG inching movement, sensor number of divisions is 2048 [pulse/rev] and 6 [mm] is set for lead, 3.41 [pulse] is needed for moving 0.01 [mm] but it moves by 3 [pulse] ($0.0088[\mathrm{~mm}]$) cutting off decimal point.

■ 13.4 Parameter 2 setting

Parameter 2 contains the following items. For the items marked with a $\boldsymbol{\text { , the optimum values }}$ are automatically entered when the robot type is entered. Refer to section 2.4.7 on how to enter the robot type.
After setting parameter 2, turn the controller power OFF and ON. As opposed to parameter 1, parameter 2 will not be validated unless the controller power is turned OFF.
During the pulse train input mode, the items marked with $\mathbf{\Delta}$ will be effective.

1. Axis display
2. In position data value
3. Overflow data value
4. Feed forward data value
5. Direction of motor revolution
6. Maximum speed
7. Return to origin speed
8. Return to origin method
9. Origin sensor logic
10. High speed return to origin position
11. Lead
12. Encoder No. of divisions
13. Encoder pulse multiplier
14. Encoder type

15. Task and axis combination
16. Task order of priority
17. Task point table
(Cannot be used with this ROlbot. Will be invalid when set.)
18. No. of task steps
19. BA I/O compatibility mode

NOTE Some settings in parameter 2 have been created for future axis developments. Be careful not to use inappropriate settings.
Also do not change initial values set when the robot type is entered. If these initial value are changed, malfunctions may occur.

Set PARA mode to input parameter 2. (Refer to section 13.1.)

CHANGE PARAMETER2
YES:ENT NO:ESC

STEP 3 Use NEXT and -NEXT to move to the K01 to K19 parameter setting screens from this state. To end the parameter setting, press ESC. Press ESC to move to step 4.

- Search function

When (SEARCH) is pressed and the parameter No. 1 to 19 is input, the parameter 2 setting screen can be searched.

- Jump function

When F1 is pressed in K01 to K09, K10 appears, when
F1 is pressed in K10 to K19, K01 appears.

STEP 4 This is the parameter 2 end screen.
Follow the instructions on the screen, and turn the power OFF. The parameter 2 setting will be validated when the power is turned ON again.

■ 13.4.1 Setting of axis display

STEP 1 Select the axis display ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{R}$, ?) with ALT
[PARA]K01
AXIS DISPLAY
A0 A1 A2 A3 $[X][X][X][X]$ and press ENT.
When NEXT is pressed, the next screen will display. Press ESC to display the parameter 2 end screen.
? - The axis display refers to the name of the axis connected to each unit when displayed on the Teach Pendant. (Selective display: X, Y, Z, R and ?)

- Even when this item is set, if the task and axis combination (refer to section 13.4.15) is set, the X will be set for the 1st axis and Y will be set for the 2nd axis for each task.

■ 13.4.2 Setting of in-position data value

STEP 1 Use the numeric keypad to enter the in-position data and press ENT.
When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to display the parameter 2 end screen.
? - The in-position data is an item used as a judgment standard of the completion of positioning.
When the logic coordinates reach the target coordinates and the deflection counter (difference of target position and current position) becomes less than this value, it will be judged that positioning has been completed, and the program will move to the next operation (step).
Even if this value is increased, the positioning will not be completed until the two conditions are established.
(Initial value: 0.05 , setting range: 0.01 to 65.00 , unit: mm)

■ 13.4.3 Setting of overflow data value

STEP 1 Use the numeric keypad to enter the overflow data and press ENT.
When NEXT is pressed, the next screen will display, and when - NEXT is pressed, the previous screen will display. Press ESC to display the parameter 2 end screen.
? When the value of the deflection counter (difference of target position and current position) increases above this value, an overflow error will occur.
(Initial value: 20000, setting range: 1 to 65535, unit: pulse)

- This value is set automatically when the robot type is entered. Refer to section 2.4.7.

- 13.4.4 Setting of feed forward data value

STEP 1 Use the numeric keypad to enter the feed
[PARA]K04 A0=02000
FEED A1=02000
FORWARD A2=02000
$\mathrm{A} 3=02000$
forward data and press ENT.
When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to display the parameter 2 end screen.
? This is the feed forward control constant.
(Initial value: 2000, setting range: 0 to 65535, unit: pulse)

- This value is set automatically when the robot type is entered. Refer to section 2.4.7.

- 13.4.5 Setting of direction of motor revolution

STEP 1 Use the numeric keypad to enter the direction of motor revolution (0: forward, 1: reverse) and press ENT.
When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to display the parameter 2 end screen.
? - Forward (0): Motor rotates in clockwise direction in respect to the positive movement command when the motor output shaft is looked from the load side.
Reverse (1): Motor rotates in counterclockwise direction in respect to the positive movement command when the motor output shaft is looked from the load side.

- This value is set automatically when the robot type is entered. Refer to section 2.4.7.
- 13.4.6 Setting of maximum speed

STEP 1 Use the numeric keypad to enter the maximum speed and press ENT.
When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to display the parameter 2 end screen.
? - This is the movement speed limit value. This setting will have a priority over all other settings. (setting range: 1.0 to 9999.9, unit: mm / s)

- This value is set automatically when the robot type is entered. Refer to section 2.4.7.

■ 13.4.7 Setting of return to origin speed

Use the numeric keypad to enter the station No. (0 to 3) and press ENT.
Use the numeric keypad to enter the origin speed and press ENT.
When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to display the parameter 2 end screen.
? - Set movement speed L (low speed), M (medium speed) and H (high speed) for returning to the origin.
(Setting range: $\mathrm{L}, \mathrm{M}=1$ to $250, \mathrm{H}=1$ to 999 , unit: mm / s)

- This value is set automatically when the robot type is entered. Refer to section 2.4.7.

NOTE - If movement speed L (low speed) and M (medium speed) are set to more than the initial value, normal return to the origin may not be possible. Also encoder error may occur.

- Even if a value after the decimal point is entered, it is assumed to be a numeric value rounded down for operation.

[Explanation of return to origin speed L, M and H]

This ROlbot has two methods of returning to the origin. (Refer to section 13.4.8.) Furthermore, there is the initial return to origin after the power is turned ON and the second and following return to origin.
(1) When parameter 2 return to origin method is set to " 0 " (Refer to section 13.4.8)

- When carrying out initial return to origin

High speed return to origin position set with parameter 2
(Refer to section 13.4.10)

NOTE If the robot is at the origin, it moves outside the origin sensor once and then carries out return to the origin again.
(2) When parameter 2 return to origin method is set to "1" (Refer to section 13.4.8)

- When carrying out initial return to origin

High speed return to origin position set with parameter 2
(Refer to section 13.4.10)

(3) When parameter 2 return to origin method is set to "2" (Refer to section 13.4.8)

(4) When parameter 2 return to origin method is set to "3" (Refer to section 13.4.8)

NOTE The operation is the same for both initial return to origin after the power is turned ON and the second and following return to origin.

■ 13.4.8 Setting of return to origin method

STEP 1 Use the numeric keypad to enter the return to
[PARA]K08 A0=0
HOME POSI. A1 $=0$
METHOD A2 $=0$
$\mathrm{A} 3=0$ origin method (0 or 1) and press ENT.
When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to display the parameter 2 end screen.
? This value is set automatically when the robot type is entered. Refer to section 2.4.7.
NOTE -When a return to origin method has been set under a condition where an axis type is wrong, this makes this equipment it impossible to return to the origin, or causes a difference in return position, so that the values set when the robot type is entered must not be changed.
$0 \ldots$. . After the origin sensor turns ON , the encoder Z-phase is detected at a low speed, and the origin is set.
If the value of the return to origin speed M (medium speed) (refer to section 10.4.7) is increased, the operation may pass over the

..... After moving to the axis end, the axis moves forward (+ direction) at a low speed and the encoder Z-phase is detected, then the origin is set.

1 After the origin sensor turns ON, the axis moves forward (+ direction) once and stops at the encoder Z-phase, and then searches for the origin sensor again at a low speed. When the origin sensor turns ON , the origin is set.

3 The axis moves backward (- direction) at a low speed from the current position and the first encoder Z-phase is detected, then the origin is set. This mode should not be used (for manufacturer adjustment use).

■ 13.4.9 Setting of origin sensor logic

STEP 1
Use the numeric keypad to enter the origin sensor logic (0 or 1) and press ENT.
When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to display the parameter 2 end screen.
? - Setting of the origin sensor logic means to select whether the output signal of the sensor assembled in the axis turns OFF or ON when detected.
(Initial value: 1 , selective value: 0 or 1)
1: OFF when detected 0 : ON when detected

- This value is set automatically when the robot type is entered. Refer to section 2.4.7.

■ 13.4.10 Setting of high speed return to origin position

STEP 1 Use the numeric keypad to enter the high speed return to origin position data and press ENT.
When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to display the parameter 2 end screen.
? - The high speed return to origin position refers to the target position when moving at a high speed (return to origin speed H) while executing high speed return to origin. The initial value is 20 , and a value less than this must not be set. (Initial value: 20.00, setting range: -8000.00 to 8000.00 , unit: mm)

■ 13.4.11 Setting of lead

STEP 1 Use the numeric keypad to enter the axis lead and press ENT.
When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to display the parameter 2 end screen.
? - The lead is the advance direction per motor revolution.
(Initial value: 20.00, setting range: 1.000 to 99.999 , unit: mm)

- This value is set automatically when the robot type is entered. Refer to section 2.4.7.

■ 13.4.12 Setting of encoder No. of divisions

STEP 1 Use the numeric keypad to enter the encoder No. of divisions and press ENT.
When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to display the parameter 2 end screen.
? - The encoder No. of divisions
(Initial value: 2000, setting range; 1 to 9999, unit: pulse/rev)

- This value is set automatically when the robot type is entered. Refer to section 2.4.7.

- 13.4.13 Setting of encoder pulse multiplier

STEP 1 Use the numeric keypad to enter the encoder pulse multiplier and press ENT.
When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to display the parameter 2 end screen.
?

- The multiplier determines at what fold to generate the pulses of the encoder installed on the motor.
(If a multiplier of 3 is set, the operation will be 2 -fold.)
(Initial value: 4 , setting range: 1 to 4)
- This value is set automatically when the robot type is entered. Refer to section 2.4.7.

The lead, No. of divisions and multiplier are parameters used to calculate the pulse rate (distance advanced per pulse). The calculation equation is as shown below.
Pulse rate $=\frac{\text { Lead }(=\text { slider movement amount per motor revolution })}{\text { Encoder No. of divisions } \times \text { multiplier }}(\mathrm{mm} / \mathrm{pulse})$
Even if the pulse rate value is 0.01 or less, the minimum unit that can be input with the Teach Pendant is 0.01 .

- 13.4.14 Setting of encoder type

STEP 1 Select the encoder type with ALT and press ENT. When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to display the parameter 2 end screen.

- The encoder type is the type of encoder installed on the motor. The following types are available.
a: Absolute encoder
i : Incremental encoder
(Initial value: a, selective types: a, i)
- If " i " is set, an absolute encoder is used as an incremental encoder.

- 13.4.15 Setting of task and axis combination

Use the numeric keypad to enter the each station No. task No. and press ENT.
(Setting range: 0 to 4)
When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display. Press ESC to display the parameter 2 end screen.
? \bullet Set the task No. as shown below.

	Task 1 Task 2	Task 3	Task 4	
$[1][0][0][0]$	1-axis specifications	No axis	No axis	No axis
$[1][2][0][0]$	1-axis specifications	1-axis specifications	No axis	No axis
$[1][2][2][0]$	1-axis specifications	2-axis specifications	No axis	No axis
$[1][2][3][0]$	1-axis specifications	1-axis specifications	1-axis specifications	No axis
$[1][2][3][3]$	1-axis specifications	1-axis specifications	2-axis specifications	No axis
$[1][2][3][4]$	1-axis specifications	1-axis specifications	1-axis specifications	1-axis specifications
$[1][2][2][3]$	1-axis specifications	2-axis specifications	1-axis specifications	No axis
$[1][1][0][0]$	2-axis specifications	No axis	No axis	No axis
$[1][1][2][0]$	2-axis specifications	1-axis specifications	No axis	No axis
$[1][1][2][2]$	2-axis specifications	2-axis specifications	No axis	No axis
$[1][1][2][3]$	2-axis specifications	1-axis specifications	1 -axis specifications	No axis

NOTE The task Nos. 1 to 4 can be used, but the task (No. 0) not designated for a unit will be handled as the "Task with no axis". Only commands excluding the axis related commands (movement commands, etc). will be executable.

- 13.4.16 Setting of task order of priority
 - With multitasking, the open time of each task is used to execute the other tasks, so it appears that each task is carried out simultaneously.
The priority to execute which task is set to determine which task to execute when an opening is generated in the task.
- If the priority is low, the execution of that task will be delayed, so set a higher priority for tasks that have time limits. If the same priority is set for multiple tasks, the task with the smaller task No. will have the higher priority.
- If three or more tasks are to be used, the tasks set to low priority may not be executed at all. In that case, set all tasks to the same priority.

NOTE If the priority is set to 0 , that task will not be executed. The task (main task) can be set only 1.

- 13.4.17 Setting of task point table

```
[PARA]K17 T1=999
```

TASK T2=999
POINT-TBL. T3=999

T4=999

This value is set to 999 for each task with this ROIbot.
When NEXT is pressed, the next screen will display, and when -NExT is pressed, the previous screen will display.
Press ESC to display the parameter 2 end screen.

■ 13.4.18 Setting of No. of task steps

STEP 1 Use the numeric keypad to enter the max. No. of steps in each task and press ENT.
[PARA]K18 T1=1000
A total of 2,000 steps can be set.
TASK T2=0000
When NEXT is pressed, the next screen will display, and when -NEXT is pressed, the previous screen will display.
When this setting is changed, the program will be cleared, so a confirmation message will display.
Press ESC to display the parameter 2 end screen.

NOTE - If the max. No. of steps is set to lower than the current value, the program of that step will be cleared.

- When 1,001 or more steps are set, the easy mode program area will be cleared and used as the sequential program area.
- A total of 1,001 or more steps cannot be set from the easy mode with this setting.
- A total of 1,001 or more steps is set with this setting, and the easy mode cannot be entered. (Refer to section 13.2.10)

■ 13.4.19 BA I/O compatibility mode
 complete signal are based on the BA series controller specifications.
(Refer to section 17.7.)

■ 13.5 How to set the tables

The tables are groups of data for which addresses are assigned to each data item.
To use the table, designate the data indirectly using the address (table No.) in the program.
As an example, the concept of the coordinate table as shown in a table below.

Coordinate table No. (address)	Coordinate data [mm]
001	$\mathrm{X}=100, \mathrm{Y}=150$
002	$\mathrm{X}=700, \mathrm{Y}=500$
$:$	$:$
999	$\mathrm{X}=600, \mathrm{Y}=300$

The following types of tables are available.

- Coordinate (point) table --- table Nos. 1 to 999 (Set for each task when using multitasking)
- Speed table ----------------- table Nos. 1 to 10
- Acceleration (ACC) table - table Nos. 1 to 20
- MVM table ------------------- table Nos. 1 to 32

Refer to section 4.1.7 for details on the MVM command.

NOTE When using multitasking, the coordinate tables are provided for each task, so change the task first. (Refer to section 5.3 .2 (1).)

Enter the PARA mode. (Refer to section 13.1.)

[PARA]	F1:P0INT TABL	
	F2:SPEED TABL	
	F3:ACCEL TABL	
	F4:MVM	TABL

STEP 2 Press F1 to F4 to select the table to be set.

■ 13.5.1 Setting of coordinate (point) table

Press F1 in the table selection screen shown in section 13.5, and select the coordinate (point) table.

- Unit: mm
- The tables that can be set are Nos. 1 to 999.
- Remote teaching and direct teaching can be used. (Refer to section 3.2.2.)

STEP 2 If ALT is pressed instead of a value, the display will change to $* * * * * * *$, and that coordinate will be handled in the same manner as the current coordinate value.

■ 13.5.2 Setting of speed table

Press F2 in the table selection screen shown in section 13.5, and select the speed table.

Input is possible for the speed table at the second line from the top.
Use the numeric keypad to enter the speed and press ENT.
Press NEXT to scroll the screen.
? - The input range is 1.0 to 9999.9 [mm / s].

- Even if the speed is specified with this parameter, the speed is limited by the value set in "setting of maximum speed data" in parameter 2.
- The initial values are as shown below.

SPD table No.	1	2	3	4	5	6	7	8	9	10
Initial value $[\mathrm{mm} / \mathbf{s}]$	100	200	300	400	500	600	700	800	900	1000

2
The tables that can be set are Nos. 1 to 10.

- 13.5.3 Setting of acceleration/deceleration table

Press F3 in the table selection screen shown in section 13.5, and select the acceleration table.

[PARA]		STEP 1	Input is possible for the acceleration table at the second line from the top.
ACC-TBL	NO 01:0.10		Use the numeric keypad and enter the
	N0 02:0.15		acceleration speed (time to reach set speed)
	N0 03:0.20		and press ENT
			Press --NEXT to scroll to the next screen.

- The input range is 0.01 to 9.99 [s].
- The initial values are as shown below.

ACC table No.	1	2	3	4	5	6	7	8	9	10
Time [s]	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55

ACC table No.	11	12	13	14	15	16	17	18	19	20
Time $[\mathbf{s}]$	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00	1.05

The tables that can be set are Nos. 1 to 20.
NOTE The maximum portable weight will differ according to the acceleration speed.

■ 13.5.4 Setting of MVM table

Press F4 in the table selection screen shown in section 13.5, and select the MVM table.
STEP 1 Use the numeric keypad to enter the P0, P1 and P2 coordinate table Nos. (1 to 999) and press ENT.
When NEXT is pressed, the next screen will display.
Press ESC to return to the table selection screen.
?

- If a specific MVM table is to be displayed or revised while inputting the MVM table (STEP 1 to 3), press (SEARCH and then enter the table No. with the numeric keypad (1 to 32).
- Refer to section 4.1.7 for program examples using the MVM table.

STEP 2 Use the numeric keypad to enter the No. of pieces to be moved and loaded and then press ENT
When -NEXT is pressed, the previous screen will display. Press ESC to return to the table selection screen.

STEP 3 Use the numeric keypad to enter the No. of the counter to be used and press ENT. When -NEXT is pressed, the previous screen will display. Press ESC to return to the table selection screen.

Chapter 14 Monitoring

This ROlbot has a function to monitor the various parameters on a screen during operation. The parameters that can be monitored are as shown below.

1. Program step No. monitor ------Active step No. of the sequential program
2. Input/output monitor -------------- Input status of system and general purpose port Output status of system and general purpose port
3. Counter and timer monitor ------Status of counter Status of timer
4. Coordinate monitor ----------------Current position coordinate Offset coordinate
5. Origin sensor/encoder

Z-phase pulse monitor -----------Status of origin sensor ON/OFF Status of encoder Z-phase pulse (ϕ Z) output

NOTE - Stop input is not effective during monitoring.

- The encoder Z-phase pulse (ϕZ) monitor is valid only for a master unit.
- When using multitasking, the status of the task displayed on the Teach Pendant will be monitored.

Method of monitoring
Programming for monitoring.

STEP 3 This is the initial display for monitoring.
Press ENT to display the next screen. Select a key from F1 to F4 and press it for necessary monitoring. When ESC is pressed, the display returns to STEP 2.

■ 14.1 Program step No. monitoring

The content and process of the currently executed program step of sequential program is displayed.

- Display the initial instruction.

STEP 1 When this display is shown, press F1

[MONI]	F1:STEP
	F2:I/0
	F3:CNT/TIM
	F4:POSITION

STEP 2 The currently active program step is displayed. The display varies according to the progress of the program.

[MONI]		
O005 a	S	NO=001
MOVP V=00	CNT [00]	
POST		

Press ESC to return to STEP 1.

■ 14.2 Input/output monitoring

Status of input/output port in program execution is monitored according to the progress of the program.

- Display the initial instruction.

STEP 2 Press F1 to monitor the input port and F2 to monitor the output. Press ESC to return to STEP 1.

- When \square is pressed (Input monitor)

Enter the station No. of the controller to be monitored and press ENT.

Display "0": OFF
Display "1": ON

STEP 4A
The status of the current system input port and general-purpose input port will be displayed in bit units.
Press NEXT to display the next screen.
Press ESC to return to STEP 2.

System input	When normal	During pulse train input mode
	Return to origin (monitor)	
Bit No. 6	Start	Servo ON
Bit No. 7	Stop	Counter clear
Bit No. 8	Reset	Reset

NOTE • For the station No. 0 (master unit) only bit Nos. 6 to 8 are valid for the system input S01 and bit Nos. 1 to 5 for the general-purpose input G01. No. 5 of S01 can be used only as the input monitor of return to origin.

- The return to home input (initial value) is set to No. 5 of G01, but the function can be moved to a random general-purpose input by designating the bit. (Refer to section 13.2.6.)
Even if the input is changed with bit designation, the return to home input status can be monitored with bit No. 5 of S01.
- The display for the invalid bits is 0 .
- When F2 is pressed (output monitor)

STEP 4B The status of the current system output port and general-purpose output port will be displayed with a bit units.
When NEXT is pressed, the next screen will display. Press ESC to return to STEP 2.

System output	Signal name
Bit No. 5	Running
Bit No. 6	Error
Bit No. 7	Positioning complete
Bit No. 8	Return to origin complete

NOTE - For the station No. 0 (master unit) only bit Nos. 5 to 8 are valid for S01. Only bits Nos. 1 to 4 are valid for G01.

- The display for the invalid bits is 0 .

■ 14.3 Counter and timer monitoring

Current counter and timer condition are monitored according to the proceedings of program execution.

- Display the initial instruction for monitoring.

STEP 2 To monitor the counter, press F1. Press

 F2 to monitor the timer. Press ESC to return to STEP 1.- When F1 is pressed: Counter monitoring

STEP 3A The current conditions of the counter are monitored. Press NEXT or -NEXT to scroll the display. Press SEARCH and enter the counter number to perform a search in the counter monitor screen. Press ESC to return to STEP 2.

- When F2 is pressed: Timer monitoring

STEP 3B The current conditions of the timer are monitored.
Press NEXT or -NEXT to scroll the display. Press ESC to return to STEP 2.

NOTE - Counter No. 1 to No. 99 can be monitored.

- Timer No. 1 to No. 9 can be monitored.

■ 14.4 Coordinate monitoring

Current coordinates are monitored according to the progress of the program.

- Display the initial screen for monitoring.

STEP 2 Press F1 to monitor the current position coordinate (absolute coordinate). Press F2 to monitor the offset coordinates.
Press ESC to return to STEP 1.

- When F1 is pressed (Coordinate monitoring)

STEP 3 Current position coordinate is displayed. Press F2: OFS POSI F3:
F4:

[MONI	$X=0100.00$
-POSI]	$Y=0100.00$

ESC to return to STEP 2.

NOTE - The value displayed for the current position is the absolute value minus the offset value.

- When the controller does not execute the OFS command, the display shows OFS $=0$ in the current position monitor.

[Example] When the point $\mathrm{A}(\mathrm{X}=80, \mathrm{Y}=100)$ movement command is executed in the program, if the offset command (OFS $X=20, Y=20$) is executed before the movement, the robot will move to point B. If this point B is monitored as the current position, ($\mathrm{X}=80, \mathrm{Y}=100$) will display.
- When F2 is pressed: Offset coordinate monitoring

STEP 4 Current offset coordinate is displayed.

 Press ESC to return to STEP 2.$?$ The offset coordinates refer to the coordinate system using the origin that has been offset (moved in parallel) with the command. This is not displayed for the origin offset.

■ 14.5 Origin sensor/encoder Z-phase pulse monitoring

The ON or OFF status of the origin sensor and the output status of the encoder Z-phase pulse (ϕZ) is displayed on the system input monitor screen.

- Display the initial screen for monitoring.

STEP 3 Enter the station No. (0 to 3) of the controller to which the axis to be monitored is connected and press ENT.

STEP 4 The current origin sensor and encoder Z-phase status will be displayed as bits at the system input No. 1 and No. 2.

System input	Signal name
Bit No. 1	Origin sensor
Bit No. 2	Encoder Z-phase

NOTE - The encoder Z-phase monitor is valid only for a master unit.

- The JOG key is invalid while monitoring the origin sensor or encoder Z-phase pulse.

Chapter 15 Search Function

When (SEARCH is pressed in any mode, the following search operation can be carried out.

■ 15.1 Search of sequential step No.

When SEARCH is pressed in the sequential PRGM mode, AUTO mode or STEP mode, the following screen will display.

STEP 2 The designated step will display.
[PRGM] 0010 NOP

- 15.2 Search of tag No.

If SEARCH is pressed twice in the sequential PRGM mode, AUTO mode or STEP mode, the following screen will display.

STEP 2 The designated tag No. step will display.

- 15.3 Search of eazy step No.

When (sEARCH is pressed in the PRGM mode of easy mode, the following screen will display.

STEP 2 The designated step will display.

$$
\begin{array}{|cc|}
\hline \text { [EASY]01 } & X=0000.00 \\
010 \quad V=00 & Y=0000.00 \\
\text { TAG:000 }
\end{array}
$$

■ 15.4 Search of easy program No.

If SEARCH is pressed in the easy mode, the easy program screen can be searched.
If SEARCH is pressed twice in the PRGM mode, or once in the AUTO mode or STEP mode, the following screen will display.

PRGM mode
[EASY]03 $\mathrm{X}=0000.00$ $201 \mathrm{~V}=00 \mathrm{Y}=0000.00$ TAG:000

AUTO, STEP mode

STEP 2 The designated easy program will display.

■ 15.5 Search of palletizing program No.

If SEARCH is pressed in the palletizing mode's PRGM mode, AUTO mode or STEP mode, the following screen will display.

STEP 2 The designated palletizing program will display.

- 15.6 Search of palletizing program screen No.

If SEARCH is pressed twice in the palletizing mode's PRGM mode, the following screen will display.

STEP 2 The designated screen will display.

```
[PRGM]04 S0 P2
01 X= 0000.00
M-1 Y= 0000.00
```

This page is blank.

Chapter 16 Manual Operation of General-purpose Outputs

The general-purpose output from the Teach Pendant can be directly turned ON and OFF. There are two methods for this outputting method.

1. Manual output using function keys
2. Manual output of random bit from PRGM (program) mode

- 16.1 Manual output using function keys

The random output port and random output bits set in the mode setting can be manually output using the function keys. This method is valid only during the JOG mode or remote teaching mode.

NOTE Set the output bit to be directly output with the mode setting before starting this operation. (Refer to section 13.2.14.)

[AUTO]	$\mathrm{X}=0000.00$
JOG	$\mathrm{Y}=0000.00$
OPERAT ION	
SPD:LOW	

STEP 1 The JOG screen display will appear, and JOG operation will be possible.

Press F4 to proceed to STEP 2.

STEP 2 The bit No. set in F1 to F4 will display. When F1 to F4 is pressed, the designated port is ON , when pressed again, it is OFF.
Press ESC to return to STEP 1.

■ 16.2 Manual output of random bit designation from PRGM mode

A random bit can be manually output in the PRGM mode.
Enter the program mode and press HELP. The following screen will display. (Refer to section 4.1.1.)

Use the numeric keypad to enter the station No. and press ENT.

STEP 3 Use the numeric keypad to enter the port No. and press ENT.

STEP 4 The status of the output port designated in STEPS 2 and 3 is displayed.
? The station No. is a number assigned to each unit. (Refer to section 2.4.4.)

Press $\frac{1 \mathrm{~N}}{1}(\mathrm{ON}), \frac{\mathrm{RET}}{0}(\mathrm{OFF})$ or ${ }^{\text {TAG }}{ }^{-}$(no change) to designate the bit. Confirm the data and press ENT. The set general-purpose output bit will turn ON.
Press ESC to return to the initial screen of the PRGM mode.

NOTE - For the station No., port No. and bit No. which can be used, refer to "Names of general-purpose output ports and Teach Pendant displays" (section 10.1.4).

Chapter 17 Other Handy Operations

■ 17.1 Teach Pendant ON/OFF

When the Teach Pendant is physically connected to the controller, it can be logically disconnected by the following key operation and make system input signals effective.

- Teach pendant OFF operation

STEP 2 The screen on the left is displayed.
Press F4 to proceed to STEP 3.
Press ESC to return to RUN mode.

STEP 3 The Teach Pendant OFF screen is displayed. This enables simulation with the teach pendant disconnected.

- Teach pendant OFF operation

- 17.2 Reset operation

The Teach Pendant can perform the same function as the reset signal (Pin No. 31) of the system input.

STEP 2 To reset, press ENT. To not reset, press ESC.
After pressing the key, operation returns to RUN mode.

- For operation after reset input, refer to section 10.2.4 "Reset input".

■ 17.3 Counter direct set

Teach Pendant can be used to set the counter value directly.

F3:T/P ON
F4:T/P 0FF

STEP 2 The screen on the left is displayed. Press F1 to set to Monitor mode. Press ESC to return to RUN mode.

STEP 3 The screen on the left is displayed.
Press F3 to proceed to STEP 4.
Press ESC to return to STEP 2.

STEP 4 The screen on the left is displayed. Press F4 to proceed to STEP 5. Press ESC to return to STEP 3.

- 17.4 Version display

The ROM version of the controller and Teach pendant can be displayed.

STEP 1 When you turn on the power, the initial screen is displayed for two seconds.

```
P0WER F1:T/P ON
    -ON F2:
    F3:CHANG TASK
    F4:EXTENSION
```

STEP 2 When this display appears after the initial screen, press F4.

STEP 4 The version will display on the screen.
Press ESC to return to STEP 3.

VERS ION	A0	$2.87 d$
	A1	$2.87 d$
T/P 2. 10	A2	$2.87 d$
	A3	$2.87 d$

? The displayed indicators on the screen have the meanings below.
A0: Master unit (station No. 0)
A1: Slave unit (station No. 1)
A2: Slave unit (station No. 2)
A3: Slave unit (station No. 3)
T/P: Teach pendant

■ 17.5 JOG operation (Manual operation of axis)

JOG operation is the operation in which the axis is moved with remote operations using the Teach Pendant.
This is used to stop the program and move the axis during operations, or to move the axis during a program editing.
If the axis is provided with brakes, the brakes will be applied and the axis will not move in the servo free state. Thus, the JOG operation is used to move the axis.
? Refer to section 3.2.2 on how to input the position data using JOG operation while creating the program.

JOG operation can be used in the PRGM mode or RUN mode when the Teach Pendant is connected and turned ON.
This cannot be used when the pulse train input mode is set.
During the sequential mode, JOG is carried out for each task. If task 1 is assigned for the 1 st axis and task 2 is assigned for the 2nd axis, the 2nd axis will not operate even if the +2 and -2 keys on the Teach Pendant are pressed. In this case, change to task 2 to jog the 2nd axis.
An example of operation in the sequential mode is given below.

STEP 1 Press $\underset{\substack{\text { DiRECT } \\ \text { JoG }}}{\substack{\text { in }}}$ in the state shown on the left. When using multitasking in the sequential mode, the task in which the axis to be jogged is assigned must be changed to. (Refer to section 5.3.2 (1).)

The JOG screen is displayed, and jog operation is enabled.

STEP 3 The jog speed is switched between HIGH and LOW by pressing ALT.
As an example, the first axis will move when +1 is pressed.

NOTE - For the axis movement during JOG operation, +1 and -1 are used for the first axis and +2 and -2 are used for the second axis. If a plus key is held down, the axis will move in the direction opposite the origin, and if a minus key is held down, the axis will move in the direction of the origin.

- Jog operation can be executed even when the controller has lost track of the current axis position (when return to origin is required). In this case, the soft limit is not applied.
- The JOG operation speed can be set with parameter 1 JOG speed. (Refer to section 13.3.7.)
- Inching during JOG operation is possible by pressing the movement keys (+1 $-1,+2,-2$) and release the key immediately.
The movement amount per inching movement can be set with parameter 1 inching movement amount. (Refer to section 13.3.8.)

STEP 4 After moving the axis to the designated position, press | DIRECT |
| :---: |
| JOG | .

The JOG operation will be canceled, and the display will return to the first screen.

■ 17.6 Clearing (initializing) coordinate table

All coordinate tables in the controller memory can be cleared.
When using multitasking, only the coordinate table of the displayed task will be cleared. Thus, change to the task containing the table to be cleared before carrying out the following operation. (Refer to section 5.3 .2 (1).)

Enter the PRGM mode (sequential) and press HELP . (Refer to section 4.1.1.) The following screen will display.

STEP 2 The screen on the left is displayed. Press F3 to proceed to STEP 3. Press ESC to return to the PRGM mode screen.

STEP 3 The screen on the left is displayed.
Press F4 to proceed to STEP 4. Press ESC to return to STEP 2.

STEP 4 The screen on the left is displayed.
Press F3 to proceed to STEP 5. Press ESC to return to STEP 3.

STEP 5 To clear the coordinate table, press
To not clear the table, press ESC
After pressing the key, operation returns to STEP 4.

NOTE All of the easy program coordinate data will also be cleared (initialized) with this operation.

■ 17.7 BA I/O Compatibility Mode

The BA I/O compatibility mode is a function that sets the operation specifications for return to origin complete output and positioning complete output to match the BA series.

■ 17.7.1 Selection method of BA I/O compatibility mode

BA I/O compatibility mode can be selected by the Disable/Enable setting in BA I/O Compatibility Mode of Parameter 2. (Refer to section 13.4.19.)

Setting	Mode	Output signal specifications (*1)	Remarks
Disable	Standard mode	BA II series controller specifications	Default
Enable	BA I/O compatibility mode	BA series controller specifications	

*1: Positioning complete signal/Return to origin complete signal
$? \quad$ The default setting (at factory shipping and after memory initialization) is Disable.
? - The BA series controller specifications are referred to as "BA I/O compatibility mode".

- The BA II series controller specifications are referred to as "Standard mode".

■ 17.7.2 Operation specifications for return to origin complete output and positioning complete output

(1) When incremental encoder type is specified

(4) Travel motion A start
(5) Travel motion A finish
(6) Travel motion B start
(7) Travel motion B finish
(8) Emergency stop input ON
(9) Reset input (Emergency stop cancel)
(10) Encoder error generation
(11) Reset input \rightarrow Error clear is not possible.
(2) When absolute encoder type is specified

NOTE Use the personal computer software (SF-98D) whose version is 2.1.0 or later.

■ 17.8 Movement operation on coordinate table setting screen

This operation is used to move the axis to the coordinate position in the coordinate table currently displayed during setting of the coordinate table.

Call the coordinate table setting screen. (Refer to section 13.5)

[PARA]	$X=0000.00$
PNT-TBL	$Y=0000.00$
NO. 001	

STEP 1 Use the NEXT, NEXT and SEARCH keys to display the coordinate table to be moved.

STEP 2 To change the coordinate, enter the coordinate with the numeric keypad and then press the ENT key. (Setting range: -8000.00 to 8000.00 , Unit: mm) (Refer to section 13.5.1) Press the start key to move to the STEP 3.

NOTE Pressing the START key when the controller has lost the current position of the axis (when return to origin is necessary) or when the servo is free leads to an error beep. In this case, the procedure does not proceed to the STEP 3.

STEP 3 The confirmation screen is displayed. Press the ENT key to start movement to the coordinate on the coordinate table screen in the STEP 2 and to proceed to the STEP 4.
Press the ESC key to return to the STEP 2.

STEP 4 During movement, the screen at the left is shown. When the movement finishes, the procedure returns to the STEP 2.

The specifications of the operation are as the followings.
Speed:
Speed table No. 1
Acceleration/deceleration time: Acceleration/deceleration table No. 5
Coordinate system:
Absolute coordinate
NOTE This operation is supported by TPH-4C version 2.27 or later.

This page is blank.

Chapter 18 Commands

Program commands and the key operation for this ROlbot are listed below.

- Move

Command	Reading	Function	Key operation	Refer to
MOVP	Move P	Axis movement to a point indirectly specified by coordinate table	Press MOV	18-26
MVB	Move B	Move (return) to point immediately before the current position	Press F1, $\frac{1 \mathrm{~N}}{1}$ and (OUT	18-28
MVE	Move E	Escape move	Press F1, $\frac{\mathbb{I N}}{1}$ and TIM.	18-29
HOME	Home	Return to origin	Press F1,$\frac{\mathrm{IN}}{1}$ and MOV . 9	18-16

- Setting parameters

Command	Reading	Function	Key operation	Refer to
SPD	Speed	Setting speed	Press $\frac{\text { SPD }}{7}$.	$18-41$
ACC	Accel	Setting acceleration/ deceleration	Press $\frac{\text { SPD }}{7}$ twice.	$18-4$
OFS	Offset	Offset	$\left.\begin{array}{c}\text { Press F1 } \\ \frac{I N}{1} . \\ 1\end{array}\right)$ and	$18-34$

- Input/output port control

Command	Reading	Function	Key operation	Refer to
OUT	Out	General-purpose port output	Press $\frac{\text { OUT }}{2}$.	$18-35$
OUTP	Out P	General-purpose port pulse output	Press $\frac{\text { OUT }}{2}$ twice.	$18-38$
OUTC	Out C	General-purpose port output of counter value	Press $\frac{\text { OUT }}{2}$ three times.	

- Timer and counter control

Command	Reading	Function	Key operation	Refer to
TIM	Time	Waiting	Press $\frac{\text { TIM }}{6}$.	18-47
TIMP	Time P	Timer preset	Press $\frac{\text { TIM }}{6}$ twice.	18-48
CNT	Counter	Preset counter value	Press $\frac{\text { CNT }}{3}$.	18-11
CNT+	Counter Plus	Count up	Press $\frac{\text { CNT }}{3}$ twice.	18-12
CNT-	Counter Minus	Count down	Press ${ }^{\text {CNT }} 3$ three times.	18-13
CNTC	Counter Clear	Clear all counters	Press F1 , OUT and1 N 1	18-14

- Jump

Command	Reading	Function	Key operation	Refer to
JMP	Jump	Unconditional jump	Press $\frac{\text { JMP }}{5}$	18-19
JMPI	Jump I	Input conditional jump	Press $\frac{\text { JMP }}{5}$) twice.	18-21
JMPC	Jump C	Counter conditional jump	Press ${ }_{5}^{\text {JMP }}$ 5 three times.	18-20
JMPT	Jump T	Timer conditional jump	Press $\begin{gathered}\text { JMP } \\ 5\end{gathered}$ four times.	18-23
BRAC	Branch	Counter jump	Press F1 , $\frac{\text { OUT }}{2}$ and ($\frac{\mathrm{RET}}{0} 0$.	18-5

- Subroutine call

Command	Reading	Function	Key operation	Refer to
CAL	Call	Unconditional call	Press $\frac{\text { CAL }}{4}$.	$18-6$
CALI	Call I	Input conditional call	Press $\frac{\text { CAL }}{4}$ twice.	$18-8$
CALC	Call C	Counter conditional call	Press $\frac{\text { CAL }}{4}$ three times.	$18-7$
CALT	Call T	Timer conditional call	Press $\frac{\text { CAL }}{4}$ four times.	$18-10$

- Program control

Command	Reading	Function	Key operation	Refer to
NOP	NOP	No function	Press NOP.	18-33
RET	Return	Return	Press $\frac{\text { RET }}{0}$.	18-40
STOP	Stop	Stop	Press $\frac{\text { RET }}{0}$ twice.	18-42
END	End	Program end	Press $\frac{\text { END }}{8}$	18-15
TAG	Tag	Tag	Press ${ }_{\text {TAG }}$.	18-45
PSEL	Sel	Program selection	Press F1 , $\frac{\text { IN }}{1}$ and RET.	18-39

- Servo control

Command	Reading	Function	Key operation	Refer to
SVON	Servo-ON	Servo-on	Press F1, $\frac{\text { IN }}{1}$ and	18-44
SVOF	$\begin{gathered} \text { Servo-OF } \\ \mathrm{F} \end{gathered}$	Servo-off	Press F1 , $\frac{\mathrm{IN}}{1}$ and (END).	18-43

- MVM commands

Command	Reading	Function	Key operation	Refer to
MVM	Move M	Palletizing movement	Press F1 , $\frac{\operatorname{IN}}{1}$ and CAL 4.	18-31
LOOP	Loop	Loop for MVM	Press F1 , $\frac{\mathrm{IN}}{1}$ and ${ }_{5}{ }^{\text {JMP }}$.	18-24
MINI	Matrix Initial	Initial counter value for MVM	Press F1, $\frac{\operatorname{IN}}{1}$ and CNT.	18-25

- Task control

Command	Reading	Function	Key operation	Refer to
TSTR	Task Start	Task start	Press F1 , ($\left.\begin{array}{c}\text { OUT } \\ 2\end{array}\right)$ and $\frac{O_{2}}{2}$.	18-51
TSTO	Task Stop	Task temporary stop	$\begin{aligned} & \text { Press F1 , } \frac{\text { OUT }}{2} \text { and } \\ & \frac{\text { CNT }}{3} . \end{aligned}$	18-50
TRSA	Task Restart	Task restart	Press F1 , $\begin{gathered}\text { OUT } \\ 2\end{gathered}$ and CAL 4.	18-49
TCAN	Task Cancel	Task forced end	Press F1 , $\frac{\text { OUT }}{2}$ and JMP .	18-46

ACC

Acceleration/deceleration command
[Function] This command is used to set the acceleration/deceleration time required for the ROlbot to reach a specified speed.
[Explanation] - Twenty acceleration/deceleration levels can be set from ACC1 to ACC20. ACC command must be set before a Move command (MOVP, MVB, MVE, MVM, HOME).

- When using multitasking, a setting must be made for each task.
- The value at each level sets the time required for the ROlbot to reach a specified speed. Times for acceleration and deceleration are equal for each setting. The settings can be changed according to the acceleration/ deceleration table. (Refer to section 13.5.3.)
The initial values are shown in the table below.

ACC level	1	2	3	4	5	6	7	8	9	10
Time [s]	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55

ACC level	11	12	13	14	15	16	17	18	19	20
Time $[\mathbf{s}]$	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00	1.05

- Once set, the acceleration rate remains unchanged until it is reset. If you do not set it the default of ACC5 is used.
- Trapezoidal speed control (a constant level of acceleration control) is used. (Example) Axis move pattern at ACC5

[Key operation]

Press $\frac{\mathrm{SPD}}{7}$ twice.

Input an acceleration/deceleration No. with the numeric keypad and press ENT. (Input range: 1 to 20)

BRAC

Counter jump
[Function] The command BRAC is used to jump to a program to the tag No. which is the resultant value of a counter No. plus the set counter value.

Enter the counter No. with the numeric keypad. Press ENT . (Input range: 1 to 99)

STEP 3 Enter the counter setting value with the numeric key-pad. Press ENT. (Input range: 0 to 999)

NOTE - The control jumps to the tag No. which is the resultant value of the counter value + counter Nos. The counter content will remain unchanged after the execution of this command.

- When the counter value details are "0" and the number to be added is "0", if the command is executed, the "TAG NOT FOUND" error will occur.
- If any total of (counter value) + (setting value) exceeds "999", "TAG NO. error" will occur.

CAL Unconditional Call

[Function] This command is used to call a subroutine program of a designated step identified by tag No.
[Explanation] - This command is used to call a subroutine program of a designated program step identified by tag No.

- This instruction requires a RET (return) command after the last step jumped to. Each subroutine must end with a RET command. When the return instruction is executed, the program returns to the step immediately following the CAL (call) step.
- Subroutines can be nested up to 10 levels. Nesting is the system in which another subroutine is called in a subroutine program.
- A diagram of the main routine and subroutine relation is shown below.

[Main routine program]

STEP 1

NOP changes to CAL. Press ENT.

Use the numeric keypad to enter the tag No. to be called. Press ENT. (Input range: 0 to 999.)

NOTE - The tag No. for STEP 2 can be set to "0" as a temporary value. However, if the command is executed with that value, the "NO TAG FOUND" error will occur. -When using multitasking, a tag No. in another task cannot be called.

CALC

 Counter Conditional Call[Function] This command is used to call a subroutine of a specified tag No. when the specified counter contents agree with the setting condition.
[Explanation] - The program proceeds to the next step when the contents of the specified counter do not meet the setting conditions.

- This command is used in the program with the command used to set the counter value (CNT) and the command to increment (CNT+) or decrement (CNT-) the counter value.
- Five comparisons are available: (=), (<), (>), ($(\leq),(\geq)$.
- Refer to the CAL command for the relation of the main routine and subroutine.

STEP 2 Use the numeric keypad to enter the tag No. to be called. Press ENT. (Input range: 1 to 999.)
STEP 3 Use the numeric keypad to enter the counter No. and press ENT.
(Input range: 1 to 99 .)
NOTE - The tag No. for STEP 2 can be set to " 0 " as a temporary value. However, if the command is executed with that value, the "NO TAG FOUND" error will occur. -When using multitasking, a tag No. in another task cannot be called.

STEP 4 Press ALT to display operators ($=,<,>,<=$, $>=$). Select one and press ENT.

STEP 5 Use the numeric keypad to enter the counter value to be compared and press ENT. (Input range: 0 to 9999.)

CALI Input Conditional Call

[Function] The subroutine program with the specified tag No. is called when the input state of the specified general-purpose input (general-purpose input port) corresponds to the setting conditions.
[Explanation] - If all of the details of the designated general-purpose port do not match the set conditions, the subroutine of the designated tag No. will not be called, and the program will move to the next step.

- If the CALI command is set as shown below, when the general-purpose input port 1 No. 1 (general-purpose input port 1-1) and No. 7 (general-purpose input port 1-7) are ON and the general-purpose input port 1 No. 4 (general-purpose input port 1-4) and No. 5 (general-purpose input port 1-5) are OFF for the unit of which the station No. is set to "0", the designated subroutine will be called. The subroutine will not be called unless all of the ON and OFF conditions match. The general-purpose input signal at the "•" display section will not judge the conditions.
(Example)

- Refer to the CAL command for the relation of the main routine and subroutine.
[Key operation]

NOTE The tag No. for STEP 2 can be set to "0" as a temporary value. However, if the command is executed with that value, the "NO TAG FOUND" error will occur. - When using multitasking, a tag No. in another task cannot be called.

NOTE - The station No. is a number assigned to each unit. (Refer to section 2.4.4.)

- For the station No., port No. and bit No. which can be used, refer to section 10.1.4
"Names of general-purpose input/output ports and Teach Pendant displays".
-Don't use any port which is not present.

CALT Timer Conditional Call

[Function] This subroutine program with specified tag No. is called when the content of the specified timer meets the setting condition.
[Explanation] - When the content of the specified timer does not meet the setting condition, the program proceeds to the next step.

- When CALT is used in a program, another command TIMP is necessary in the program to set the timer.
- Nine timers are available: 1 to 9 .
- Five comparisons are available: $(=),(<),(>),(\leq),(\geq)$.
- Refer to the CAL command for the relation of the main routine and subroutine.

STEP 1 Press $\frac{C A L}{4}$ four times. NOP changes to CALT. Press ENT.

Use the numeric keypad to enter the tag No. to be called. Press ENT. (Input range: 0 to 999.)

STEP 3 Use the numeric keypad to enter the timer No. and press ENT. (Input range: 1 to 9.)

NOTE - The tag No. for STEP 2 can be set to "0" as a temporary value. However, if the command is executed with that value, the "NO TAG FOUND" error will occur.
-When using multitasking, a tag No. in another task cannot be called.

Press ALT to display operators ($=,<,>,<=$, $>=$). Select one and press ENT.

STEP 5 Use the numeric keypad to enter the timer value to be compared, then press ENT. (Input range: 0 to 999.9)

CNT

 Preset Counter Value[Function] This command is used to set the value for a specified counter.
[Explanation] - Ninety-nine counters from No. 1 through No. 99 can be used.

- Any value from 0 through 9999 can be set for each counter.
- A usage example is shown below.

The counter is used when repetitive movement is to be carried out for a designated number of times, etc.

STEP 1 Press $\frac{\text { CNT }}{3}$.
NOP changes to CNT. Press ENT.

STEP 2 After entering the counter No. with the numeric keypad, press ENT. (Input range: 1 to 99 .)

STEP 3 Enter preset values (initial values) with the numeric keypad, Press ENT.
(Input range: 0 to 9999.)
Whether to clear the counter details (set the counter details to " 0 ") or to hold (not change the counter details) when the controller power is turned ON or reset is executed can be selected. (Refer to section 10.2.6.)

CNT+ Counts up

[Function] This command is used to increment the counter value for a specified counter.

STEP 2 After entering the counter No. with the numeric keypad and press ENT. (Input range: 1 to 99 .)

STEP 3 Enter the increment value with the numeric keypad and press ENT.
(Input range: 0 to 9999 .)
NOTE - If any value gained with addition becomes more than "9999", the counter value will stay at "9999".
? Refer to the CNT command for the usage method.

CNT-
 Counts down

[Function] This command is used to decrement the specified counter value for the specified counter.
[Key operation]

STEP 2 Enter the counter No. with the numeric keypad and press ENT.
(Input range: 1 to 99.)
STEP 3 Enter the decrement value with the numeric keypad and press ENT.
(Input range: 0 to 9999 .)
NOTE - If any value gained with subtraction becomes less than " 0 ", the counter value will stay at "0".
? Refer to the CNT command for the usage method.

CNTC Gounter All Clear

[Function] This command is used to clear all counters, that is to set all counter values to zero.

[PRGM]
0001
CNTC
[Function] The program end defined with this command
[Explanation] When executed, the END instruction will return the program step counter to step 0001 and the ROlbot will wait for another START input.
If the END command is executed in task 2 to 4 of multitasking, that task will return to step 0001 and stop. Then, it will wait for starting with TSTR.

HOME Return to Origin

[Function] An Axis returns to origin at high Home positioning speed set with parameters. When using multitasking, only the task that executes this command will return to the origin.
[Explanation] The axes are moved in an order preset with the parameters. (Refer to section 13.3.6.)


```
[PRGM]
0001
HOME
```

Refer to sections 13.4.7 Setting of return to origin speed.

Waiting for General Purpose Port Input

[Function] This command is used to stop a program from proceeding to the next step until conditions set by general purpose input ports are satisfied.
[Explanation] If the IN command is set as shown below, when the general-purpose input port 1 No. 1 (general-purpose input port 1-1) and No. 7 (general-purpose input port 1-7) are ON and the general-purpose input port 1 No. 4 (general-purpose input port 1-4) and No. 5 (general-purpose input port 1-5) are OFF for the unit of which the station No. is set to "0", the program will move to the next step. The general-purpose input signal at the "." display section will not judge the conditions.
(Example)

"1"	----------- Input ON
"0"	---------- Input OFF
"•"	-------

The input signal is judged with an AND condition.

INPC

[Function] This command is used to set general purpose input as the content of a specified counter.
[Explanation] - In the unit with the designated station No., the designated general-purpose input port signal is interpreted as a binary value, is converted into a decimal value and is set in the designated counter.

- The counter values that can be led in are " 0 to 15 " for the master unit and "0 to 255 " for the slave unit. For the expansion input/output unit, the values are " 0 to 255 " when using the general-purpose input port 2 and " 0 to 15 " when using the general-purpose input port 3.
\(\left.$$
\begin{array}{|c|c|}\hline \begin{array}{c}\text { General-purpose input bit } \\
\text { pattern (Binary) }\end{array} & \begin{array}{c}\text { Counter } \\
\text { value } \\
\text { (Decimal) }\end{array}
$$

\hline 0000 \& 0000

0000 \& 0001

0000 \& 0010

0000 \& 0011

··· \& ···

0000 \& 1111

··· \& ···

1111 \& 1111\end{array}\right]\)| 1 |
| :--- |
| Input No. 8 |

0 ... Input OFF
1 ... Input ON
[Key operation] STEP 1 Press $\frac{1 N}{1}$ twice.
 0001

Use the numeric keypad to enter a station No., and press ENT.
STEP 3 Use the numeric keypad to enter a port No., and press ENT.
STEP 4 Enter a counter No. with the numeric keypad and press ENT.
(Input range: 1 to 99 .)

NOTE - The station No. is a number assigned to each unit. (Refer to section 2.4.4.)

- For the station No., port No. and bit No. which can be used, refer to section 10.1.4 "Names of general-purpose input/output ports and Teach Pendant displays".
- Don't use any port which is not present.

JMP

Unconditional Jump
[Function] The control jumps to a specified tag No.
[Explanation] - This command is used to instruct a program to jump unconditionally to a step specified by a tag No.

- Refer to the TAG command for usage examples.

STEP 2 After entering a tag No. with the numeric keypad, press ENT. (Input range: 1 to 999.)

NOTE

- The tag No. for STEP 2 can be set to "0" as a temporary value. However, if the command is executed with that value, the "NO TAG FOUND" error will occur.
\bullet When using multitasking, a tag No. in another task cannot be jumped to.

JMPC

Counter Conditional Jump
[Function] This command is used to instruct a program to jump to a step with a specified tag No. only when the set counter value meets specified conditions in the program.
[Explanation] - When the set counter value does not meet the specified conditions, the program proceeds to the next step.

- Programs for which this command is used need another program to execute setting of the counter value, CNT and to increment and decrement the counter value, CNT+, CNT-.
- Five comparisons are available: (=), (<), (>), (\leq), (\geq).
- Refer to the CNT command for the usage methods.
[Key operation]

STEP 1 Press $\frac{\mathrm{JMP}}{5}$ three times. NOP changes to JMPC. Press ENT.

Use the numeric keypad to enter the tag No. which the program jumps to, then press ENT. (Input range: 1 to 999.)

STEP 3 Enter a counter No. with the numeric keypad and press ENT . (Input range: 1 to 99.)

NOTE - The tag No. for STEP 2 can be set to " 0 " as a temporary value. However, if the command is executed with that value, the "NO TAG FOUND" error will occur. -When using multitasking, a tag No. in another task cannot be jumped to.

STEP 4 Press ALT to display operators $(=,<,>,<=$, >=). Select one and press ENT.

STEP 5 Use the numeric keypad to enter a counter value to be compared and press ENT. (Input range: 0 to 9999 .)

JMPI

[Function] This command is used to instruct a program to jump to a step with a specified tag number when the input conditions of a general purpose input signal meet the set conditions in the program.
[Explanation] - The jump is executed only when the input of ports set by this command satisfy the ON/OFF conditions of general input port; if they do not, the program proceeds to the next step.

- If the JMPI command is set as shown below, when the general-purpose input port 1 No. 1 (general-purpose input port 1-1) and No. 7 (general-purpose input port 1-7) are ON and the general-purpose input port 1 No. 4 (general-purpose input port 1-4) and No. 5 (general-purpose input port 1-5) are OFF for the unit of which the station No. is set to "0", the program will jump to the designated step. The general-purpose input signal at the "•" display section will not judge the conditions.

(Example)

Use the numeric keypad to enter the tag No. the program jumps to, then press NEXT. (Input range: 1 to 999.) Use the numeric keypad to enter a station No., and press ENT.
Use the numeric keypad to enter a port No., and press ENT.

NOTE - The tag No. for STEP 2 can be set to "0" as a temporary value. However, if the command is executed with that value, the "NO TAG FOUND" error will occur.
-When using multitasking, a tag No. in another task cannot be jumped to.

NOTE - The station No. is a number assigned to each unit. (Refer to section 2.4.4.)

- For the station No., port No. and bit No. which can be used, refer to section 10.1.4 "Names of general-purpose input/output ports and Teach Pendant displays".
- Don't use any port which is not present.

JMPT

[Function] This command is used to instruct a program to jump to a step with a specified tag No. only when the specified timer value meets the set conditions in the program.
[Explanation] - When the specified timer value does not meet the set conditions, the program proceeds to the next step.

- Programs for which this command is used need another program to command the timer setting (TIMP).
- Nine timers from No. 1 to No. 9 are used.
- Five comparisons are available: (=), (<), (>), (\leq), (\geq).
- Refer to the TIMP command for usage examples.
[Key operation]

STEP 1 Press $\frac{\mathrm{JMP}}{5}$ four times.

NOP changes to JMPT. Press ENT.

Use the numeric keypad to enter the tag No. which the program jumps to, then press ENT. (Input range: 1 to 999.)

STEP 3 Use the numeric keypad to enter the timer No. and press ENT. (Input range: 1 to 9).

NOTE - The tag No. for STEP 2 can be set to "0" as a temporary value. However, if the command is executed with that value, the "NO TAG FOUND" error will occur.
-When using multitasking, a tag No. in another task cannot be jumped to.

STEP 4 Press ALT to display operators (=, <, >, <=, $>=$). Select one and press ENT.

STEP 5 Use the numeric keypad to enter a timer value to be compared and press ENT. (Input range: 0 to 999.9.)

LOOP

MVM Loop
[Function] This command is used to control loop operation in the specified MVM table.
[Explanation] When this command is executed, the counter specified in the MVM table of the specified group is controlled. the program jumps to the step with the tag No. specified by the content and conditions of the counter.

Use the numeric keypad to enter the group No. (MVM table No.), then press ENT. (Input range: 1 to 32.)
STEP 3 Enter a tag No. for THEN with the numeric keypad and press ENT.
(Input range: 1 to 999.)
STEP 4 Enter a tag No. for ELSE with the numeric keypad and press ENT. (Input range: 1 to 999.)
?
Tag for THEN: A program jumps to the THEN tag when an MVM program has completed.
Tag for ELSE: A program jumps to the ELSE tag when an MVM program has not completed.

NOTE - The tag No. for STEP 3 and STEP 4 can be set to " 0 " as a temporary value. However, if the command is executed with that value, the "NO TAG FOUND" error will occur.
-When using multitasking, a tag No. in another task cannot be designated.
-For an application example of the command, refer to "Palletizing work with MVM commands" (section 4.1.7).

MINI

MVM Counter Initial
[Function] This command is used to set "1" to the counter in a specified group used for matrix movement.
[Explanation] - This command MINI is a command related to matrix movement and used together with MVM and LOOP.

- When MINI is executed, the values of all counters in the MVM table of the specified group No. are set to "1."
[Key operation]

STEP 1 Press F1 followed by $\frac{1 N}{1}$ and $\frac{C N T}{3}$. NOP changes to MINI. Press ENT.

STEP 2 Enter a group No. (MVM group No.) with the
 numeric keypad and press ENT. 0001 MINI

GRP=01 (Input range: 1 to 32.)
? When this command is used, the values of all counters in a specified MVM table are set to "1."

NOTE •For an application example of the command, refer to "Palletizing work with MVM commands" (section 4.1.7).

MOVP

Axis Movement to the Indirectly Designated Point by Coordinate Table
[Function] The ROlbot moves a point set indirectly by coordinate table No.
[Explanation] - This command is used to execute ROlbot movement to a point set by the coordinate table in parameter mode.

- There are two ways to designate the coordinate table No. : directly and indirectly by counter.
- When using multitasking, a separate coordinate table is used for each task.
[Key operation]

STEP 4 In case of designating the coordinate table No. indirectly by counter, enter the counter No. with the numeric keypad, then press ENT. (Input range: 0 to 99. 0 means "No appointment.")

STEP 5 Enter the speed table No. with the numeric keypad and press ENT.
(Input range: 0 to 10.) When $\mathrm{V}=0$ is entered, the speed is set to the designated speed preset by SPD command.
STEP 6 Press ALT and select either POST (position) or COSE (course) and press ENT.

NOTE - If neither STEP 3 nor STEP 4 or if both are designated, a "PARAMETER ERROR" will occur when the command is executed. If the counter No. is designated in STEP 3 and the counter details are "0", a "TABLE No. ERROR" will occur when the command is executed.
-For details of a (absolute coordinate position), i (relative coordinate position), POST and COSE, refer to "MOV System Command Words and Parameters" (section 3.2.4).

2 If the cursor is at STEP 2 to 6 , press $F 1$ to change to the coordinate table display and set the coordinates. (Refer to section 13.5.1 on how to set the coordinate table.) Press ESC to return to the original display.

MVB

Return to Previous Point
[Function] This command is used to return the ROlbot to the point prior to the current position, form which the previous move command was is used.

Enter the speed No. with the numeric keypad and press ENT . (Input range: 0 to 10.) When $\mathrm{V}=0$ is entered, the speed is set to the designated speed preset by SPD command.

STEP 3 Press ALT and select either POST (position) or COSE (course) and press ENT.

NOTE -For details of POST and COSE, refer to "MOV System Command Words and Parameters" (section 3.2.4).
[Function] When escape input signal set in the mode setting is ON while an MVE command is executed, the current program step will be recognized completed and the program will proceed to the next step.
[Explanation] - If escape input is set in the mode setting, the set general-purpose input signal will function as the escape input during execution of the MVE command. When this input turns ON, the axis will decelerate to a stop, and then the next step will be executed. (Refer to section 13.2.3.)

- The deceleration time will be the time set with the ACC command. If ACC is not set, the speed in ACC5 will be used.
- If the MVE command is executed while the escape input is ON, the MVE command will not be executed, and the next step will be executed.
- The set general-purpose input signal will be the escape input only when the MVE command is executed. It will function as the general-purpose input port during commands other than the MVE command.
- If the axis has been decelerated and stopped with the escape input and the next command is a move command to a relative position, the relative movement will take place using this stop position as a reference. ($B \rightarrow B^{\prime}$ in Fig. shown below.)

- The MVE command includes a method to directly designate the coordinate table No. and a method to designate the coordinate table No. indirectly using a counter.

STEP 1 Press $F 1$, $\frac{1 \mathrm{IN}}{1}$ and $\frac{\text { TIM }}{6}$. NOP changes to MVE. Press ENT.

No., which designates the coordinate table No. of the destination. Press ENT.
(Input range: 0 to 99. 0: No designation.)

STEP 5 Enter the speed table No. with the numeric keypad and press ENT.
(Input range: 0 to 10.) When $\mathrm{V}=0$ is entered, the speed is set to the designated speed preset by SPD command.

NOTE - If neither STEP 3 nor STEP 4 or if both are designated, a "PARAMETER ERROR" will occur when the command is executed. If the counter No. is designated in STEP 3 and the counter details are " 0 ", a "TABLE No. ERROR" will occur when the command is executed.

- For details of a (absolute coordinate position), i (relative coordinate position), refer to "MOV System Command Words and Parameters" (section 3.2.4).
? If the cursor is at STEP 2 to 5 , press $F 1$ to change to the coordinate table display and set the coordinates. (Refer to section 13.5.1 on how to set the coordinate table.) Press ESC to return to the original display.

MVM

Palletizing Move
[Function] This command is used to execute palletizing movement according to the MVM table of a specified group.
[Explanation] - Before using the MVM command, you set the parameters listed below relating to the MVM operation in parameter mode.

- Coordinate table No. of operation origin points P0, P1 and P2.
- Numbers of objects to be picked up and carried
- Counter No. used for the palletizing operation

Refer to section 13.5.4 MVM Table Setting for the parameter setting.

- When MVM command is executed, the ROlbot moves to the coordinate calculated by the following equations:

Coordinates of each matrix point
P0: $\left(X_{0}, Y_{0}\right)$
P1: $\left(X_{1}, Y_{1}\right)$
P2: $\left(X_{2}, Y_{2}\right)$
$P_{0} \rightarrow P_{1}$ pieces: n_{1}
$P_{0} \rightarrow P_{2}$ pieces: n_{2}
$\left.\begin{array}{l}\text { Value of counter used in } \mathrm{P}_{0} \rightarrow \mathrm{P}_{1} \text { direction: } \mathrm{C}_{1} \\ \text { Value of counter used in } \mathrm{P}_{0} \rightarrow \mathrm{P}_{2} \text { direction: } \mathrm{C}_{2}\end{array}\right\}$
C_{1} and C_{2} are incremented by one with the LOOP command.
These are variables that are the details (value) of the counter.

MVM calculation expression

X coordinate value $=\mathrm{X}_{0}+\mathrm{X}_{1}\left(\mathrm{C}_{1}-1\right)+\mathrm{X}_{2}\left(\mathrm{C}_{2}-1\right)$
Y coordinate value $=Y_{0}+y_{1}\left(C_{1}-1\right)+y_{2}\left(C_{2}-1\right)$
Where, x_{1} and y_{1} are the X and Y elements of the pitch in the $P_{0} \rightarrow P_{1}$ direction

$$
x_{1}=\frac{X_{1}-X_{0}}{n_{1}-1}, y_{1}=\frac{Y_{1}-Y_{0}}{n_{1}-1}
$$

x_{2} and y_{2} are the X and Y elements of the pitch in the $P_{0} \rightarrow P_{2}$ direction

$$
x_{2}=\frac{X_{2}-X_{0}}{n_{2}-1}, y_{2}=\frac{Y_{2}-Y_{0}}{n_{2}-1}
$$

[Key operation]

STEP 1
Press F1, $\frac{\mathbb{I N}}{1}$ and
 NOP changes to MVM. Press ENT.

NOTE •For an application example of the command, refer to "Palletizing work with MVM commands" (section 4.1.7).
\bullet For details of POST and COSE, refer to "MOV System Command Words and Parameters" (section 3.2.4).
[Function] There is no execution at this step, and the program proceeds to the next step.
[Key operation]

NOTE NOP is entered in any program step in which no instruction is written.

OFS

Offset
[Function] This command is used to shift the absolute position for an axis by the amount of the specified offset value.
[Explanation] - It can be used for move commands (MOVP, MVB, MVE, and MVM).

- The OFS command, once executed, remains effective until the next OFS command is executed.
- Enter "OFS $\mathrm{X}=0, \mathrm{Y}=0$ " into the program and execute it to release the offset.
- Note that the current position after the execution of the offset command is displayed as follows.
$\left[\begin{array}{l}\text { Current position } \\ \text { monitor display }\end{array}\right]=[$ absolute position $]-[$ executed offset value $]$ (Example)

When offset value is $X=30, Y=20$
Point A absolute coordinates: $X=60, Y=40$
-) Executed offset value: $\quad X=30, Y=20$
Current position monitor display: $X=30, Y=20$

[Key operation]

STEP 2 Enter the coordinate table No. with the numeric

OUT

[Function] The general-purpose output of the unit with the designated station No. is turned ON or OFF.
[Explanation] - After execution, the output state is held until the next OUT command is issued. Even if the END command is executed and the program ended, the output signal will be held.

- To turn OFF the output signal, set " 0 " at the output bit desired to be turned OFF with OUT command, or turn OFF the power supply of the controller.
- Whether to hold or clear (turn OFF) the general-purpose output signal in the mode setting and continuous start signal state when the reset signal is input can be selected. (Refer to sections 10.2.6 and 15.2.11.)
- If the OUT command is set as shown below, the general-purpose output port 1 No. 1 (general-purpose output port 1-1) and No. 7 (general-purpose output port 1-7) will turn ON and the general-purpose output port 1 No. 4 (general-purpose output port 1-4) and No. 5 (general-purpose output port $1-5)$ will turn OFF for the unit of which the station No. is set to "0". The general-purpose output signal at the "•" display section will hold the current signal state.
(Example)

"1" ---------- Output ON
"0" ---------- Output OFF

Press out $\frac{\text { OUT }}{2}$.
NOP changes to OUT.
Press ENT.

Use the numeric keypad to enter a station No., and press ENT.

STEP 3 Use the numeric keypad to enter a port No., and press ENT.
STEP 4 Enter the output conditions with $\frac{\text { RET }}{0}$, $\stackrel{I N}{1}$, ${ }^{\text {TAG }}$. Then press ENT.
Key functions for output conditions:

NOTE - The station No. is a number assigned to each unit. (Refer to section 2.4.4.)

- For the station No., port No. and bit No. which can be used, refer to section 10.1.4 "Names of general-purpose input/output ports and Teach Pendant displays".
- Don't use any port which is not present.

OUTC

Counter Value General-purpose Port Output
[Function] The counter details are output to the general-purpose port of the designated station No.
[Explanation] - The designated counter details are interpreted as a binary value, and are output to the designated general-purpose output port.

- The counter values that can be output are " 0 to 15 " for the master and slave unit, and "0 to 255 " for the expansion input/output unit. (A parameter error will occur if the counter value exceeds this range.)

Counter value (Decimal)	General-purpose output bit pattern (Binary)	$0 \ldots$ Output OFF 1 1\ldots Output ON

[Key operation]

STEP 2 Use the numeric keypad to enter a station No., and press ENT.

STEP 3
Use the numeric keypad to enter a port No., and press ENT.
STEP 4 Enter the counter No. with the numeric keypad and press ENT. (Input range: 1 to 99)
NOTE - The station No. is a number assigned to each unit. (Refer to section 2.4.4.)

- For the station No., port No. and bit No. which can be used, refer to section 10.1.4 "Names of general-purpose input/output ports and Teach Pendant displays".
- Don't use any port which is not present.

OUTP

General-purpose Port Pulse Output
[Function] The output of the designated general-purpose output port of the designated station No. unit is turned ON or OFF for a designated time.
[Explanation] - The next step will not be moved to unless the set time has passed.

- The time can be set between 0 and 99.9 sec . in one second increments.
- If the OUTP command is set as shown below, the general-purpose output port 1 No. 1 (general-purpose output port 1-1) and No. 7 (general-purpose output port 1-7) will turn ON and the general-purpose output port 1 No. 4 (general-purpose output port 1-4) and No. 5 (general-purpose output port $1-5)$ will turn OFF for the unit of which the station No. is set to "0". The general-purpose output signal at the "•" display section will hold the current signal state.
(Example)

$$
\begin{aligned}
& \text { "1" } \quad \text {.........Output ON } \\
& \text { "0" } \cdots \cdots \cdots \text { Output OFF } \\
& \text { "•" } \\
& \text {.........Hold current output state }
\end{aligned}
$$

STEP 1 Press $\frac{\text { OUT }}{2}$ twice. NOP changes to OUTP. Press ENT.

NOTE - The station No. is a number assigned to each unit. (Refer to section 2.4.4.)

- For the station No., port No. and bit No. which can be used, refer to section 10.1.4
"Names of general-purpose input/output ports and Teach Pendant displays".
-Don't use any port which is not present.

PSEL Program Selection

[Function] The status of the program No. selection input signal set with the mode setting is judged, and the tag No. is jumped to according to the input state. (Refer to section 10.2.9.)
[Explanation] - The program No. input signal is judged at the point the PSEL command is executed.

[Key operation]

0001
PSEL

Refer to section 13.2.5 for details on the bit No. selection input bit designation.
During multitasking, if the PSEL command is input for multiple tasks and is executed, the "NO TAG FOUND" error will occur. Jumping to a tag No. in another task is also not possible.

RET

[Function] This command is used with a Call command (CAL, CALI, CALC and CALT) in pairs to return the program to the next step following the step called by it. The subroutine program ends when this command is executed.

Return Command

[Key operation]

[PRGM]
0001
RET
? Refer to the CAL command for the ideology on the main routine and subroutine.

SPD

Speed Command
[Function] This command is used to set the speed for the actuator movement.
[Explanation] - Ten levels of speed from SPD1 to SPD10 can be set.

- This command must be set before a Move command (MOVP, MVB, MVE and MVM.)
- When using multitasking, a setting must be made for each task.
- The speed at each level can be changed with the speed table. (Refer to section 13.5.2.)
- Once the speed is set, this value remains unchanged until the next setting. If no speed value is set, the speed defaults to the SPD1.
- Do not set the speed higher than the maximum allowed. If the speed value exceeds the maximum, the speed defaults to the speed set in parameter 2. (Refer to section 13.4.6.)
- The allowable maximum speed depends on the length of the axis stroke and ball screw lead. (Refer to the ROlbot instruction manual for details.)
[Key operation]

Press $\frac{\text { SPD }}{7}$ followed by
ENT NOP changes to SPD. Press ENT.

Enter speed No. with the numeric keypad and press ENT.
(Input range: 1 to 10.)

STOP

Stop Command
[Function] This command is used to stop the program and display the next program step.
When using multitasking, the task that executed this command will stop.
[Explanation] If the program is to be continued after stopping it with a command, input the start signal. If the program is to be returned to step No. 1 and then executed, input the reset signal, and then input the start signal. Note that the setting of the continuous start mode and the status of the continuous start input signal are related. (Refer to section 10.2.6.)
[Key operation]

[PRGM]
0001
STOP

SVOF

Servo-off Command
[Function] The axis is set in servo-free condition.
When using multitasking, the axis of the task that executed this command will enter the servo-free condition.
[Explanation] When the SVOF command is executed, any axis equipped with a brake is broke.
[Key operation]


```
[PRGM]
0001
SVOF ALL
```


SVON
 Servo-on Command

[Function] The axis is set in servo-lock condition.
When using multitasking, the axis of the task that executed this command will enter the servo-lock condition.
[Explanation] When SVON command is executed, any axis brake is released.
[Key operation]

[PRGM] 0001
SVON ALL

TAG

Tag Command
[Function] This command is used to enter the tag No. in the program.
[Explanation] - The tag No. is an address that designates the jump designation.

- The tag No. can be entered from No. 1 to 999.
- When this command is executed, the program proceeds to the next step with no program execution similarly to NOP command.
- A usage example is shown below.

This is a program that repeats a certain process.

[Key operation]

NOTE If the same tag No. is input, the "DOUBLE TAG ERR." will occur.
When using multitasking, if the same tag No. is input even in another task, the "DOUBLE TAG ERR." will occur.

TCAN
 Task Forced End

[Function] The designated task is ended.
[Explanation] The designated task will be set in the same state as when that task executes the END command.
[Key operation]

TIM

[Function] This command is used to stop the program execution for a specified period of time.
[Explanation] The amount of time to wait can be set from 0.0 to 999.9 seconds in increments of 0.1 seconds.

Enter the wait period (in seconds) with the numeric keypad and press ENT. (Input range: 0.0 to 999.9)

TIMP

Timer Preset Command
[Function] This command is used to set the initial time value to a specified timer.
[Explanation] - There are nine timers from No. 1 to No. 9 Initial time value can be set in each timer from 0.0 to 999.9 seconds in increments of 0.1 second.

- After the time is set, the timer begins counting to 0 . Program execution, however, proceeds to the following steps independently of the count down.
- This command is used together with JMPT and CALT.
- A usage example is shown below.

The program waits the specified time for the general-purpose input signal input from an external source. If there is an input signal, it is processed. If there is no signal input within the designated time, the program is ended.

[Key operation]
STEP 1 Press $\begin{gathered}\text { TIM } \\ 6\end{gathered}$ twice.

NOP changes to TIMP.
Press ENT.

STEP 2 Enter the timer No. with the numeric keypad and press ENT.
(Input range: 1 to 9.)
STEP 3 Enter the preset value (initial value) with the numeric keypad and press ENT.
(Input range: 0.0 to 999.9.)

TRSA Task Restart

[Function] The designated task is restarted.
[Explanation] - The task that was started and then stopped with the STOP command or TSTO command will enter the ready state again.

- If this command is executed to a task that has not been started once, an error will occur.
[Key operation]

STEP 1 Press F1 and then $\frac{\text { OUT }}{2}$ and $\frac{\text { JMP }}{5}$. NOP changes to TRSA. Press ENT.

STEP 2 Enter the task No. with the numeric keypad and press ENT. (Input range: 1 to 4)

TSTO Task Temporary Stop

[Function] The designated task is stopped temporarily.
[Explanation] The designated task will be set in the same state as when that task executes the STOP command.
[Key operation]

STEP 2 Enter the task No. with the numeric keypad and
 0001 TSTO

TSTR

Task Start

[Function] The designated task is started.
[Explanation] When this command is executed, the designated task will enter the ready state. Task 1 will start from the Teach Pendant or system input start, so it will not start with this command.
[Key operation]

STEP 2 Enter the task No. with the numeric keypad and
 0001 TSTR

This page is blank.

Chapter 19 Error messages

- When an error is generated, the ERROR LED (red) on the front panel of the controller will light and the Teach Pendant will display error messages.
- If an error occurs during multitasking, the Teach Pendant display will automatically change to the task in which an error occurred, and an error message will display.
- There are four ways to clear an error.

When an error cannot be cleared, the power must be turned off and then on again.

1. Teach Pendant clear	Press CLEAR on the Teach Pendant.
2. System input clear	Input a RESET signal to the system by setting pin No.31 ON. Reset will be executed. (Refer to section 10.2.4.)
3. CC-Link clear	Perform a reset input. (Set RYn3 to ON.)(*1)
4. DeviceNet clear	Perform a reset input. (Set the start device+3 to ON.)(*2)

? *1: n : Address assigned to the master unit by the station number setting *2: +3: Offset amount from the start device (unit: bits)

19.1 Error Display

When an error occurs, the error code and error message are displayed on the teach pendant. Check the meaning and cause of the error from the error list, and perform the remedy.
? When multiple errors occur, the error that was detected first is displayed.
Although all errors are cleared by the error clear procedure, if these errors include an error that cannot be cleared, that error will be displayed, and the power must be turned off and then on again.

- 19.2 Error Table

No.	Error name	Meaning/Cause	Remedy	State
ER02	Incompatible controller	An incompatible type of T/P was connected to the controller.	Check the T/P and controller model, and use the correct type.	L-*G-N
ER12	Watchdog timer error	The CPU is being overloaded.	Turn the power off and then on again. The CPU may be overloaded due to noise. Refer to section 2.4.3 for measures for reducing and preventing noise. *The error cannot be cleared by CLEAR or a reset. The power must be turned off and on again.	F-R-1
ER13	Emergency stop	The emergency stop switch or emergency stop input was activated.	Clear the emergency stop switch or emergency stop input.	F-R-1
ER20	Axis 1 communication error	An error occurred in communication with the slave unit.	Check if the link cable is disconnected, has a bad contact, or a broken wire. Also, check that the power supply is operating normally. *The error cannot be cleared by CLEAR or a reset. The power must be turned off and on again.	F-R-1
ER30	Axis 2 communication error			
ER40	Axis 3 communication error			
ER50	Axis 4 communication error			
ER21	Axis 1 overspeed error	The motor speed is abnormally high	Check if the maximum speed setting is within the specification range.	F-R-1
ER31	Axis 2 overspeed error			
ER41	Axis 3 overspeed error			
ER51	Axis 4 overspeed error			
ER22	Axis 1 overcurrent error	A driver error occurred due to a low voltage, excessive current, or driver overheating.	Check if the input current has fallen below -10% of the voltage setting, the transportable weight has been exceeded, the robot has contacted the mechanical stopper, the robot has contacted a foreign object, or the controller cable has a short-circuit or ground fault.	F-R-1
ER32	Axis 2 overcurrent error			
ER42	Axis 3 overcurrent error			
ER52	Axis 4 overcurrent error			
ER23	Axis 1 overload error	The motor load is large, or a current exceeding the rated current has flowed continuously.	Check if the transportable weight has been exceeded, the robot has contacted the mechanical stopper, the robot has contacted a foreign object, or the cable has a broken wire.	F-R-1
ER33	Axis 2 overload error			
ER43	Axis 3 overload error			
ER53	Axis 4 overload error			
ER24	Axis 1 overflow	The motor could not perform tracking for the command.	Check if the overflow data value is set correctly, the acceleration/deceleration time is normal, the transportable weight has been exceeded, the robot has contacted the mechanical stopper, the robot has contacted a foreign object, or the cable has a broken wire.	F-R-1
ER34	Axis 2 overflow			
ER44	Axis 3 overflow			
ER54	Axis 4 overflow			

No.	Error name	Meaning/Cause	Remedy	State
ER26	Axis 1 encoder error	The encoder signal line has a disconnected connector, broken wire, bad contact, or faulty encoder. The setting of return to origin speed or the adjustment of return to origin position are incorrect.	Check if the encoder signal line connector is connected securely and if there is a bad contact or broken wire in the cable. Set return to origin speed or adjust return to origin position. *The error cannot be cleared by CLEAR or a reset. The power must be turned off and on again.	F-R-1
ER36	Axis 2 encoder error			

ER5B	Axis 4 motor overheat error		object.	
No.	Error name	Meaning/Cause	Remedy	State
ER2C	Axis 1 encoder backup error	The absolute counter value of the encoder could not be backed up normally. This error also occurs if the encoder connector is temporarily disconnected during backup.	Check if the voltage of the backup power supply (such as the battery) is less than 3.6 V . After this error occurs, the return to origin operation must be performed before executing any axis operations.	F-R-1
ER3C	Axis 2 encoder backup error			
ER4C	Axis 3 encoder backup error			
ER5C	Axis 4 encoder backup error			
ER2D	Axis 1 encoder switching error	During backup, the robot was subjected to a sudden acceleration, and the encoder motion could not be tracked.	Check if the axis unit was stopped during high-speed movement, collided with the axis end or other component, and has rebounded. Also, check if the axis unit has been subjected to a sudden acceleration by an external force when the power was turned off. If an error has occurred because of rebound acceleration due to a collision, cushioning materials can be installed at the collision location to reduce the rebound acceleration. *The error cannot be cleared by CLEAR or a reset. The power must be turned off and on again.	F-R-1
ER3D	Axis 2 encoder switching error			
ER4D	Axis 3 encoder switching error			
ER5D	Axis 4 encoder switching error			
ER60	Continuous execution failure	This equipment is in a state where continuous execution cannot be performed. (The power was during off during program execution (during operation).)	Set the continuous start input to OFF, and then turn the power off and then on again. After the power is turned off, continuous restart is enabled only when program execution is stopped or the power was turned off. *The error cannot be cleared by CLEAR or a reset. The power must be turned off and on again.	F-R-1
ER61	Return to origin incomplete	An axis-related command was executed (sequential) or started while return to origin operation had not been performed after an encoder-related error occurred or after a synchronized axes search.	Perform return to origin operation.	F-R-1
ER62	Unexecutable	-The stop input is ON, or a start or return to origin was performed in a servo free state.	-After clearing the error, check that the stop input of system input is not set to ON. Also, if the servo is turned off, turn on the servo.	F-R-1

No.	Error name	Meaning/Cause	Remedy	State
EP80	TP communication error	Communication cannot be established using the teach pendant or RS-232C cable.	Check if the connector is connected securely, there is a bad contact, or the cable has a broken wire. *The error cannot be cleared by CLEAR or a reset. The power must be turned off and on again.	F-R-1
ER90	ID error	The contents of the backup memory were corrupted by noise, fluctuations in the supply voltage, or other cause.	Clear the error. All the programs and parameters are initialized, and so re-enter the programs and parameters.	F-R-1
ER91	Sequential program memory error	The contents of the sequential program were corrupted by noise, fluctuations in the supply voltage, or other cause.	The error step number is displayed on the screen, and so check the program. If errors occurred in multiple locations, another error step number is displayed when an error is cleared.	F-R-1
ER92	Palletizing program memory error	The contents of the palletizing program were corrupted by noise, fluctuations in the supply voltage, or other cause.	The program number and screen number where the error occurred are displayed on the screen. (Program number - Screen number) If errors occurred in multiple locations, the program number and screen number for another error are displayed when an error is cleared.	F-R-1
ER93	Parameter memory error	The contents of the parameters were corrupted by noise, fluctuations in the supply voltage, or other cause.	Check the parameters.	F-R-1
ER94	Coordinate table memory error	The contents of the coorrinate table were corupted by noise, fluctuations in the supply voltage, or other cause.	The error table number is displayed on the screen, and so check the coordinate table. If errors occurred in multiple locations, another erro table number is displayed when an error is cleared.	F-R-1

No.	Error name	Meaning/Cause	Remedy	State
ER96	Acceleration/deceleratio n table memory error	The contents of the acceleration/deceleration table were corrupted by noise, fluctuations in the supply voltage, or other cause.	The error table number is displayed on the screen, and so check the acceleration/deceleration table. If errors occurred in multiple locations, another error table number is displayed when an error is cleared.	F-R-1
ER97	MVM table memory error	The contents of the MVM table were corrupted by noise, fluctuations in the supply voltage, or other cause.	The error table number is displayed on the screen, and so check the MVM table. If errors occurred in multiple locations, another error table number is displayed when an error is cleared.	F-R-1
ER98	Easy program memory error	The contents of the easy program were corrupted by noise, fluctuations in the supply voltage, or other cause.	The error step number is displayed on the screen, and so check the program. If errors occurred in multiple locations, another error step number is displayed when an error is cleared.	F-R-1
ERAO	Command error (impossible command)	The program tried to execute an impossible command.	Check the program.	F-R-1
ERA1	Tag undefined	An undefined tag number was found in a jump, call, BRAC, PSEL, or tag number search.	Check the program.	F-R-1
ERA2	Tag duplicate definition	A tag number was double-defined.	Correct the tag number.	F-R-1
ERA3	Stack overflow	Nesting was performed more than 10 times in the CAL system command.	Check the program.	F-R-1
ERA4	Stack underflow	An extra RET command was executed in the relationship between the CAL system commands and RET commands.	Check the program.	F-R-1
ERA8	Parameter error	Command and other parameters are invalid. The OUTS command is set to 65 or higher.	Check the program.	F-R-1

No.	Error name	Meaning/Cause	Remedy	State
ERB0	Step number error	A program was executed that exceeded the number of task steps (refer to section 13.4.18) setting. In easy mode, a program was executed that went past the final step. In external point designation mode, the program selection input bit was not designated for the mode designation.	Check the program. In external point designation mode, designate the program selection input bit.	F-R-1
ERB1	Tag number error	The tag number is outside the range.	Check the program.	F-R-1
ERB8	Robot number error	The robot type is outside the range.	Set the correct robot type.	L-G-0
ERC0	Axis 1 + soft limit exceeded	The designated coordinate value has exceeded the soft limit positive value.	Check the axis 1 soft limit positive value and the program.	F-R-1
ERC1	Axis 1 - soft limit exceeded	The designated coordinate value has exceeded the soft limit negative value.	Check the axis 1 soft limit negative value and the program.	F-R-1
ERC2	Axis 2 + soft limit exceeded	The designated coordinate value has exceeded the soft limit positive value.	Check the axis 2 soft limit positive value and the program.	F-R-1
ERC3	Axis 2 + soft limit exceeded	The designated coordinate value has exceeded the soft limit negative value.	Check the axis 2 soft limit negative value and the program.	F-R-1
ERC4	Axis 3 + soft limit exceeded	The designated coordinate value has exceeded the soft limit positive value.	Check the axis 3 soft limit positive value and the program.	F-R-1
ERC5	Axis 3 - soft limit exceeded	The designated coordinate value has exceeded the soft limit negative value.	Check the axis 3 soft limit negative value and the program.	F-R-1
ERC6	Axis 4 + soft limit exceeded	The designated coordinate value has exceeded the soft limit positive value.	Check the axis 4 soft limit positive value and the program.	F-R-1
ERC7	Axis 4 - soft limit exceeded	The designated coordinate value has exceeded the soft limit negative value.	Check the axis 1 soft limit negative value and the program.	F-R-1
ERE0	Other errors	This indicates other errors		F-R-1

? The state column refers to the state of the controller when an error occurs (servo LED error output).

- Servo state

L: Lock, F: Free

- LED state

R: Lit red, *R: Flashing red, G: Lit green, * G: Flashing green

- Error output

0: OFF, 1: ON

■ 19.3 Flashing of status display LED

There are 3 following patterns in flashing of status display LED. The status of controller is
judged by the color and the time of flashing.
(1) Request for power OFF

(2) Backup voltage drop alarm

(3) Waiting for communication with Slaves

Chapter 20
 BA-C series

This master unit can be connected to CA01-S05 (slave unit of BA-C series). CA01-S05 will be explained in this chapter. Refer to the Axis Instruction Manual for details on the robot type (six-digit figure)

20.1 Specification

Item			Description
Compatible robot		COMPO ARM BA-C series	
Controller model		CA01-S05	
Number of controllable axes		1 axis(by connecting to master unit)	
Motor capacity		50 W	
Error signal		Error display lamp lights (front panel), Teach Pendant (Connect to master unit)	
Origin sensor input		Included	
Regenerative function		Included (with external regenerative resistor mounted)	
Dynamic brake function		None	
Mechanical brake drive output		24 V DC - 0.4 A or less (for non-excitation operation holding brake) Manual reset is possible by Brake Reset Switch (SW1)	
Protective functions	Hardware errors	Sensor error, Drive power supply error, EEPROM error, and more	
	Software errors	Overspeed, Overload, Positional deviation exceeded and more	
	Warnings	Low battery voltage	
Status indicators		The green LED lights when the power is ON, and the red LED lights when an error has occurred.	
Control power supply voltage (Note 1)		24 V DC $\pm 10 \%$	
Drive power supply voltage (Note 1)		24 V DC $\pm 10 \%$	
Control power supply capacity		0.25 A	
Drive power supply capacity		Based on axis model. Rating 3 A (Max. 9 A)	
Environmental conditions		Operating temperature range	0 to $40^{\circ} \mathrm{C}$
		Operating humidity range	90\% max. (no condensation)
		Storage temperature range	-10 to $85^{\circ} \mathrm{C}$
		Storage humidity range	90\% max. (no condensation)
		Environment	Indoor (not exposed to direct sunlight), maximum altitude of 1000 m , location not exposed to dust, dirt, corrosive gases, or flammable gases
		Vibrations/Impact	$4.9 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max} . / 19.6 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max}$.
Dimensions		$31(\mathrm{~W}) \times 146(\mathrm{H}) \times 89(\mathrm{D})$ (not including screw protrusions)	
Weight		Approx. 0.25 kg	

20.2 Explanation of each part

(1) External dimensions

(2) Names and functions of each part

A
(1) CN6 battery connector

This is a connector for the resolver ABS backup battery.
For details on the battery connector, refer to section 2.7.8.
(2) SW1 brake reset switch

This is a momentary switch for manually resetting the brake.
The brake is manually reset while the lever is raised to the up position, and the brake returns to normal brake control when it is released.

ACAUTON
Use caution when manually releasing the brake. It could drop suddenly, resulting in damage to the workpiece or robot hand or entanglement of the operator's hand.

LED1 status LED

This LED displays the status of the controller. The green LED lights when the power is ON, and the red LED lights when an error has occurred.
I. Normal mode (SW2 is set to 1 to 3)

Refer to "(1) Status display LED" in section 2.3.2.
II. Boot mode (SW2 is set to F)

Color	Status	Flashing pattern
Flashing red + green	Boot standby	(1)
	Boot in progress	(2)
Solid green	Normal end	-
Solid red	Abnormal end	-

- Flashing pattern (1)

- Flashing pattern (2)

(4) SW2 mode setting switch

This switch is used to set the station No. of each slave unit when a slave unit is connected and multiple axes are controlled.
Set to " F " when the firmware is updated.
(5) CN3 sensor

This is a connector for connecting the resolver cable.

Pin No.	Signal name
A1	S2 (Resolver output)
B1	S4 (Resolver output)
A2	S1 (Resolver output)
B2	S3 (Resolver output)
A3	R1 (Resolver excitation)
B3	R2 (Resolver excitation)
A4	Origin sensor input (+)
B4	Origin sensor input (-)
A5	N.C.
B5	GND (For origin sensor)
A6	N.C.
B6	GND (Shield)

N.C.: No Connection

- Cable-side connector model

Receptacle housing
Terminal
Manufacturer

- Controller-side connector model

Tab header 1376020-1
Manufacturer Tyco Electronics AMP
(6) CN4 RS485/CAN connector

Link cable from an upper controller is connected to this connector. Refer to section 20.8.
(7) CN5 RS485/CAN connector

Link cable to a lower controller is connected to this connector. Refer to section 20.8.
(8) SW3 Terminator setting switch

This switch is used to connect a terminator for communication. Refer to section 20.8.

bit	Signal name	Notes
1	Terminator setting	Terminator is connected when this switch is on
2	N.C.	

(9) CN1 power connector

This connector inputs the control power supply and drive power supply.

Pin No.	Signal name		Refer to section
1	GND (Drive power supply)	Connected with pin No. 3 inside the controller	
2	24 V DC (Drive power supply)		20.6
3	GND (Control power supply)	Connected with pin No. 1 inside the controller	
4	24 V DC (Control power supply)		
5	PA	Connected to external regenerative resistor	20.10
6	JP1	Connected to external regenerative resistor	

NOTE For details on selecting the power supply, refer to section 20.4.

- Cable-side connector model

(10) CN 2 motor connector

This is a connector for connecting the motor cable.

Pin No.	Signal name	Notes
1	U	
2	V	
3	W	
4	F.G	
5	BK +	Brake
6	BK-	Brake

- Cable-side connector mode Receptacle housing Terminal Manufacturer

- Controller-side connector model

Header
Manufacturer

20.3 Connections

CA01-S05 is connected like the chart below.

(*1) This connection is not needed if using a motor without a holding brake.
(*2) This connection is required when the regenerative energy is large. Refer to section 2.10 .

- 20.4 Selecting the power supply

The each power supply of CA01-S05 is the list shown below.
If capacity of the drive power supply is insufficient, low power output, low torque, and other problems can occur that prevent full performance during operation.

Power supply capacity

Power supply	Voltage	Capacity	Notes
Control power supply	$24 \mathrm{~V} \mathrm{DC} \pm 10 \%$	0.25 A	
Drive power supply	24 V DC $\pm 10 \%$	3 A	Rating (Max. 9 A)

- When connecting multiple controllers

If multiple controllers are connected to a single power supply, a power capacity equivalent to the sum of the power capacities of the power supplies of each controller is required.
However, in cases where axes do not operate simultaneously, the power capacity can be reduced for the drive power supply based on the operation pattern.
For example) When two units are connected
Control power supply : $0.25 \mathrm{~A} \times 2=$ more than 0.50 A
Drive power supply :
9A $\times 2$ = more than 18A (In case two axes accelerate or decelerate at same time)

- Regenerative operation

If the motor decelerates suddenly or rotary torque is applied externally, the regenerative operation can generate a back electromotive force, which can cause an increase in drive voltage.(Refer to section 20.10)

20.5 Installing

The controller uses a natural cooling method through convection. When installing the controller, place it in the vertical orientation as shown in the figure below, and leave a space of at least 10 mm right and left, 50 mm above and below it.
If the ventilation is insufficient, the sufficient performance will not be achieved, and faults could occur.

Make sure that foreign matter such as fluids or dust does not enter the controller from the ventilation holes.
This unit does not have a dust proof structure. Avoid use in dusty places.
If the ambient temperature exceeds $+40^{\circ} \mathrm{C}$, install cooling fans or implement other cooling measures.

Front side

Side surface

20.6 Supply power and grounding

The power supply cable of the controller is connected as shown below.
Power supply connector wiring procedure
(1) Peel off the covering of the wires.

Uncovered wire length: 6 to 7 mm
(2) Open the wire terminal pockets of the power supply connector.
Fit on the connection lever supplied with the controller, and press it in the direction of the arrow in the figure below to open.
(3) Insert the uncovered wire section into the opening.

After inserting, release the pressure of the connection lever.

* Insert the wire firmly all the way inside.
* Be careful that you do not form a short-circuit with an adjacent wire.
(1)

Peel off 6 to 7 mm of the wire covering.

Connect to the power supply connector at the bottom of the controller.

123456

The pin number indicators are not shown on the wire connectors. As shown in the figure, they are numbered $1,2, \ldots 6$ from the left.

Pin No.	Signal name	Notes
1	GND (Drive power supply)	Connected with pin No. 3 inside the controller
2	24 V DC (Drive power supply)	
3	GND (Control power supply)	Connected with pin No. 1 inside the controller
4	24 V DC (Control power supply)	
5	PA	Connected to external regenerative resistor
6	JP1	Connected to external regenerative resistor

[^1]Adjust based on your usage conditions.

■ 20.7 Improvement of noise resistance

For details on Improvement of noise resistance, refer to section 2.4.3. But be like the chart below in case of inserting a power line insulation transformer (1:1) or noise filter.

20.8 Connecting controllers

The master unit can control up to four axes by connecting more than one CA01-S05 with link cables. Also it is possible to control axes, putting together CA20-S10 or CA20-S40. For details on how to connect, refer to section 2.4.4. But regard COMM1 as CN4 and COMM2 as CN5 about communication connectors. Also set station No. of CA01-S05 with SW2 and terminator of CA01-S05 with 1 pin of SW3.

Show the connection example below when second and fourth axis are CA01-S05 and third axis is CA20-S10.

Mater unit
CA20-M10

Slave unit 1
CA01-S05

Slave unit 2 CA20-S10

Slave unit 3 CA01-S05

■ 20.9 Resolver ABS backup

All models of the BA-C axis AC servomotor include a resolver ABS. The power is driven by a battery to enable constant monitoring of motor operation even when the power supply to the controller is cut off and to allow smooth startup without returning to the origin when starting the system and recovering from an emergency stop.

NOTE If the setting of "Setting of encoder type" (refer to section 13.4.14) is "Incremental encoder", the absolute function does not operate even if the battery is connected.

- CN6 battery connector signal names and pin Nos.

Pin No.	Signal name
1	GND (-)
2	VB(+)

NOTE If the polarity is mistaken, the backup will not be possible and faults could occur.

- Controller-side connector model

Header IL-2P-S3FP2-1
Manufacturer JAE

- Battery holder

Wire clamp
SSP-518
Manufacturer Shinagawa Shoko
*As shown in the figure at right, insert and secure the battery in the battery holder, and use by affixing to the controller top surface or other location.

- Lithium battery specifications

Item			Description	Remarks
Part name			Lithium battery	Thionyl chloride lithium battery
Model			ER17500V C	Manufactured by Toshiba Battery
	Nominal voltage/capacity		3.6 V 2700 mAh	
	Dimensions	Battery body	$\phi 17 \times 47 \mathrm{~mm}$ (excluding protrusions)	
		Harness length	$\begin{aligned} & 50 \pm 5 \mathrm{~mm} \\ & \text { (excluding connectors) } \end{aligned}$	
	Weight		Approx. 20 g	
Backup connection time (Note 1)			Approx. 1 year (Note 2)	$25^{\circ} \mathrm{C}$, backup current $260 \mu \mathrm{~A}$

(Note 1) This is the cumulative time that the controller unit power remains in the OFF state.
(Note 2) The retention time of the battery varies depending on the temperature and other factors. Use these figures as a general guide only.

- Backup specification

	Item	Specification	Remarks
Backup voltage		3.6 V DC (Standard)	Controller front LED flashes in green when at 3.1 V DC or less (low voltage warning) (Note 1) Battery error occurs at 2.5 V DC or less during backup
Consumption current	When controller is in non-conducting state	$\begin{gathered} 260 \mu \mathrm{~A} \\ \text { (Maximum) } \\ \hline \end{gathered}$	$25^{\circ} \mathrm{C}$ Maximum instantaneous current: $2 \mathrm{~mA}$
	When controller is in conducting state	$1 \mu \mathrm{~A}$ (Standard)	

Note 1: The LED indicator remains flashing in green even if the backup voltage is recovered while the power is on. The power is turned on again. In some cases, the status LED does not blink in green even at a voltage drop due to the impedance.

- Encoder-related errors

For details on Encoder-related errors, refer to section 2.4.10.

■ 20.10 Regenerative Resistors

Regenerative resistors are devices that absorb the energy generated when the axis unit motor is decelerated. These are used when the load inertia exceeds the allowable value or when a large load descends down a long stroke (generating a large amount of power) along the Z-axis. (The regenerative resistor prevents an overvoltage from occurring in the controller.)

* A resistor type (CAR-0500) and a unit type (CAR-UN50) are available.
* All discharged energy is converted to heat.
* When the resistor generates an abnormal amount of heat, a contact output (N.C.) occurs.
* This unit is for one axis.

20.10.1 Specifications

Item		Description	
	Model	CAR-0500	CAR-UN50
Regenerative operation voltage		48 V DC (controller by controller)	
Cooling system		Natural air cooling	
Protective functions		Temperature relay is activated at a resistor internal temperature of $135^{\circ} \mathrm{C}$ Output contact: 1b Maximum switching voltage: $250 \text { V AC/42 V DC }$ Maximum switching current: 0.2 A AC/DC (Minimum switching current: $1 \mathrm{~mA} \mathrm{AC/DC)}$	Temperature relay is activated at a unit surface temperature of $120^{\circ} \mathrm{C}$ Output contact: 1b Maximum switching voltage: $110 \mathrm{~V} \text { AC/DC }$ Maximum switching current: 0.3 A AC/DC Maximum switching power: 6 W AC/DC (Minimum switching current: $0.1 \mathrm{~mA} / 1 \mathrm{~V} \mathrm{DC}$)
	Installation environment	Indoor (not exposed to direct sunlight), maximum altitude of 1000 m location not exposed to dust, dirt, corrosive gases, or flammable gases	
	Operating temperature	0 to $40^{\circ} \mathrm{C}$	
	Operating humidity	90\% max. No condensation	
	Operating atmosphere	No corrosive gases	
	Storage temperature	-10 to $85^{\circ} \mathrm{C}$	
	Storage humidity	90\% max. No condensation	
	Storage atmosphere	No corrosive gases	
	Vibrations	$4.9 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max}$.	
	Dimensions	$30(\mathrm{~W}) \times 130(\mathrm{H}) \times 60(\mathrm{D})$	$30(\mathrm{~W}) \times 146(\mathrm{H}) \times 88(\mathrm{D})$
Weight		Approx. 0.39 kg	Approx. 0.22 kg

■ 20.10.2 External dimensions

CAR-0500

CAR-UN50

20.10.3 Installation

The regenerative resistors uses a natural cooling system based on convection currents. When installing the regenerative resistors, install it standing vertically as shown in the figure, and provide at least 10 mm of space on the right and left sides and at least 50 mm of space at the top and bottom.
If proper ventilation is not provided, the controller will not only fail to provide full performance, but a breakdown could also occur.

Be careful that liquids, dust, and other foreign objects do not get inside the regenerative resistors.
The controller does not have a dust-proof structure. Therefore, avoid using it in locations with large amounts of dust or dirt.

If the ambient temperature exceeds $+40^{\circ} \mathrm{C}$, install cooling fans or implement other cooling

■ 20.10.4 Connection example

Connect the controller and the power supply to the regenerative resistors like the chart below.

In the case of a unit type, connect with a connector

- Usage Notes

- An internal temperature relay is activated when the CAR-0500 reaches $135^{\circ} \mathrm{C}$ and when the CAR-UN50 reaches $120^{\circ} \mathrm{C}$.
- When this relay is activated, the outputs of the temperature relay are opened.
- Organize the sequence so that the drive power supply of the controller always turns off when the temperature relay is activated.
- If the temperature relay is activated momentarily, about three minutes are required until it is reset (restored to normal status).
Acaution
The regenerative resistors are very hot while operating. Allow sufficient time for cooling before servicing.
- Connection terminal

CAR-0500

Bottom View

* If the length of the output lines of the temperature relay is not enough, use by connecting the supplied relay connector.
* The wires should be provided by the customer.

CAR-UN50

Front View

Pin No.	Name
1	Resistor 1
2	Resistor 2
3	Temperature relay 1
4	Temperature relay 2
5	FG

* The wires should be provided by the customer.

CAR-UN50

Accessory: Connector, wire connection lever

- Connector model Plug

734-105
Wire connection lever 734-230 Manufacturer WAGO

- Wiring procedure
(1) Hook the supplied wire connection lever as shown in the figure below.
(2) Insert the wire all the way inside while pressing the wire connection lever.
Downward as shown in the figure below.
(3) Return the wire connection lever to its original position.
(4) Gently pull on the wire to check that it is nnnnortad rnrrartly

* The pins are connected electrically inside the connector.

222-412

[^2]
Chapter 21 Maintenance and Inspection

- 21.1 Procedures before and after inspection and maintenance

(1) Before inspection and maintenance

1) Be sure maintenance and inspection personnel are adequately trained. If none of your personnel has adequate training, ask your manufacturer's representative to carry out inspection and maintenance or to train your personnel.
2) Make sure the ROlbot operating area is adequately illuminated.
3) Put a nice on the start switch and other devices at the operator's stationary panel informing that inspection or maintenance is underway.
Before personnel enter the operating area of the ROlbot, the ROlbot's power switch must be locked open to prevent power being supplied to the ROlbot. Also, if the entrance to the fence around the operating area is equipped with a safety plug, personnel should carry it when entering the fenced area.
4) Before personnel enter fenced areas of cabinets for inspection or maintenance of control circuits, cut off power to all drive units.
5) If inspection or maintenance must be done within the operating area while the ROlbot is moving, take the following precautions:

- Do not enter the area alone. Work in pairs. One person might act as a watchman while the other performs the inspection.
- Operate the ROlbot at the slowest speed practical to accomplish its job to give personnel time to avoid being struck by any unexpected movement by the ROlbot.
- Have an operator closely monitor the ROlbot, so he can immediately activate emergency stop if the ROlbot makes any unexpected movement or if inspection personnel appear endangered.

6) Discharge residual pneumatic pressure in the cylinder before disassembling or changing parts in the pneumatic gauge.
7) When disassembling or changing parts in hydraulic and pneumatic lines, be very careful to prevent dust or other foreign matter from contaminating them.
(2) Procedures after inspection or maintenance
8) Return tools and instruments to their designated place.
9) Always perform a test run. Make sure all personnel are out of the operating area before starting the test.
10) Report completion of inspection and maintenance work and the test run to the appropriate person in charge.

■ 21.2 Inspection before operation

(1) Check the following before operation:

1) Braking device performance
2) Emergency stop device performance
3) Interlock device between bumpers and the ROlbot
4) Interlock devices between the ROlbot and auxiliary devices
5) External cables and piping for damage
6) Power source voltage, hydraulic oil pressure and pneumatic pressure
7) ROlbot movement
8) Presence of abnormal sound or vibration
9) Bumpers
(2) Determine the positions from which personnel will perform the inspection or maintenance.
They should remain as far out of the ROlbot operating area as possible.

■ 21.3 Periodic inspection

Make an inspection standard including inspection items, method, criteria and timing considering the installation location, operating frequency, parts durability and other conditions and factors of the ROlbot, and conduct periodic inspections.
Check the following during inspection work:

1) Loose parts on the main components
2) Lubrication and other conditions of moving parts
3) Power transmission components
4) Hydraulic and pneumatic systems
5) Electric systems
6) Fault detection systems
7) Encoder section
8) Servo system
[Controller inspection places]
9) Check that the voltage supplied to the controller is in the usage range ($\pm 10 \%$ of rated voltage).
10) Inspect the ventilation holes to the controller, and remove any dirt or dust, etc., that is adhered.
11) Inspect the controller cable (controller to axis), and confirm that none of the screws, etc., are loose.
12) Confirm that the controller installation screws, etc., are not loose.
13) Inspect each connector (motor output connector, encoder input connector, Teach Pendant connector), and confirm that there is no looseness or play, etc.

■ 21.3.1 Inspection of timing belt

The timing belt should be inspected approximately every 500 hours.

- Check the belt for deterioration, fatigue and scratches, etc., and replace it immediately if any abnormality is found. Refer to the Axis Instruction Manual for the replacement procedures.
- When using the motor folding axis with brakes for vertical use (as the Z axis) observe the following items.

1) The belt must be replaced periodically within 3,000 hours of operation.
2) The belt's life will be greatly affected by the working environment and conditions. If any abnormality is found during inspection, replace the belt immediately.

ACAUION
Snapping of the belt used for vertical use will be extremely dangerous. Make sure to replace the belt at an early stage.

21.4 Lubrication

(1) Parts to be lubricated

Ball screw

Parts to be lubricated	Lubricant (Maker)	Interval	Quantity of lubricant
Ball screw	Alvania No. 2		
(Showa Shell)	Every three months	Apply light coat on ball screw shaft	
	Lupply approx. 1 cc of grease to each part with a grease nipple.		

(The first lubrication must be performed on the 30th day after the starting operation.)

(2) Lubrication procedure

1) Turn OFF the power switch and unplug the power cable to disconnect the ROlbot from the power source.
2) Remove the axis frame cover.
3) Lubricate the parts listed in the table above.
4) Wipe off excess lubricant.
5) Reassemble the frame cover.

21.5 Cleaning

Clean the robot body.
Cleaning procedure
(1) Turn OFF the power switch and disconnect the ROlbot from the power source.
(2) Use a rag to wipe dust and foreign matter off the frame and covers.
(3) Remove the frame cover and wipe away dust and foreign matter from the inside. Lubricate according to the lubrication procedure given in section 21-4.
(4) Resecure the frame cover.

21.6 Spare parts

■ 21.6.1 Controller spare parts

Although a fault or error may be found at an early stage, repairs cannot be made without the required parts. It is recommended that spare parts for consumable components be kept on hand.

Part name	Qty. per unit	Part and type	Maker	Specifications	Size
Fuse	2	Cylindrical glass tube fuse. 232008MA250	Littelfuse, Inc.	Electricity Control Law Class B specified. Rush-resistant type	$05.2 \times$ 20 mm

■ 21.6.2 Axis spare parts

Refer to the Axis Instruction Manual for the axis spare parts.

This page is blank.

SHIBAURA MACHINE CO.,LTD. head office

 2068-3, Ooka, Numazu-Shi Shizuoka-Ken 410-8510, JapanTEL: [81]-(0)55-926-5032 FAX: [81]-(0)55-925-6527

TM ROBOTICS [AMERICAS] INC.

755 Greenleaf Avenue, EIK Grove Village, IL 60007, U.S.A. TEL: [1]-847-709-7308 FAX: [1]-847-869-7358

TM RDRDTICS[EURDPE] LTD.

Unit 2, Bridge Gate Centre,
Martinfield, Welwyn Garden City, Herts AL7 1JG UK
TEL: [44]-(0)1707-290370 FAX: [44]-(0)1707-376662

[^0]: *: The input and output are based on the direction viewed from the robot controller.

[^1]: *1 Two plain washers are inserted to prevent dropping during transportation.

[^2]: * These are not displayed on the connector body.

